当前位置:网站首页 >> 168彩票下载星空娱乐 >> 数据挖掘论文 数据挖掘论文心得体会(模板18篇)

数据挖掘论文 数据挖掘论文心得体会(模板18篇)

格式:DOC 上传日期:2023-12-20 12:31:02
数据挖掘论文 数据挖掘论文心得体会(模板18篇)
时间:2023-12-20 12:31:02     小编:飞雪

无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。写范文的时候需要注意什么呢?有哪些格式需要注意呢?下面我给大家整理了一些优秀范文,希望能够帮助到大家,我们一起来看一看吧。

数据挖掘论文篇一

数据挖掘的概念和应用已经渗透到社会生活和工业生产的各个领域。作为数据挖掘的实践者,本人在读数学专业的同时,也兴趣盎然地涉足了数据科学和机器学习领域。在一次数据挖掘课程中,我完成了一篇论文,能让我对数据挖掘这个领域有更深入的认识和体验。这篇论文让我深入了解了数据挖掘的思路,技术和应用,并且让我体会到写论文不仅仅是理论知识,更需要实践的动手能力,思维的掌握能力,和成果演示的表达能力。在这篇心得体会中,我想分享我的经验,和大家一起探究数据挖掘的独特之处。

数据挖掘作为一个复杂的技术领域,它的研究对象可以是已有的数据集合,经修正的数据对象或者真实的数据。要想在这个领域获得成功,首先需要有学习数据挖掘的信念。学习数据挖掘,不仅需要具有信息学、数学、统计、计算机等领域的基本素养,还要具备探索、创新、思维、推理能力等本质要素。当我们深入学习数据挖掘技术时,我们不仅需要明``确各项技术特征,还需要全面了解不同类型的数据分析流程。

一般来说,学习数据挖掘的方法包括:学习关于数据挖掘的各种知识点、探索分享“开源”资源、通过训练理论模型以及掌握不同实际应用场景下的数据挖掘流程等。这些方法都非常必要,同时也大大丰富了我们的数据挖掘知识储备。

第三段:论文的核心内容。

在毕业论文写作之中,我写了一篇关于“基于树模型的数据挖掘方法研究与应用”的论文。本文利用树形神经网络模型,并通过对数据源进行预处理和特征选择,把语音呼叫数据与样本数据进行匹配,并提出了树形神经网络模型的性能检验。同时,本文探讨了该模型的实际应用场景以及对未来语音识别的发展具有重要的参考价值。该论文的相关资料、数据等都经过了极为详尽的研究和讨论。通过数据挖掘的方法,该论文配备有附录和数据模型的详细数据分析。

第四段:论文的收获。

通过这篇论文的写作,我除了掌握数据挖掘的基本技能,如预处理、分析等,更重要的是锻炼了自己的学习能力、团队沟通协作能力和美术设计等多方面的能力。通过论文的撰写和演示,我更加深入地认识了数据挖掘应用的深度、挑战和前景。

第五段:未来展望。

在未来的学习和工作中,我希望能够不断强化自己数据挖掘领域方面的知识储备,加速自身的魅力和资质提升,成为引领行业的新一代人才,并在日后的实践中不断总结经验,挖掘新的理论问题,依托技术优势和网络平台,推动数据挖掘与科技创新的合理发展,并为行业的创新与发展做出重要的贡献。

数据挖掘论文篇二

数据挖掘技术在金融业、医疗保健业、市场业、零售业和制造业等很多领域都得到了很好的应用。针对交通安全领域中交通事故数据利用率低的现状,可以通过数据挖掘对相关交通事故数据进行统计分析,从而发现其中的关联,这对提升交通安全水平具有非常重要的意义。

数据挖掘(datamining)即对大量数据进行有效的分类统计,从而整理出有规律的、有价值的、潜在的未知信息。一般来讲,这些数据存在极大的随机性和不完全性,其包括各行各业各个方面的数据。数据挖掘是一个结合了数据库、人工智能、机器学习的学科,涉及统计数据和技术理论等领域。

关联分析作为数据挖掘中的重要组成部分,其主要作用就是通过数据之间的相互关联从而发现数据集中某种未知的联系。关联分析最初是在20世纪90年代初被提出来的,一直备受关注。已被广泛应用于各行各业,包括医疗体检、电子商务、商业金融等各个领域。关联规则的挖掘一般可分成两个步骤[1]:

(1)找出频繁项集,不小于最小支持度的项集;

(2)生成强关联规则,不小于最小置信度的关联规则。相对于生成强关联规则,找出频繁项集这一步比较麻烦。l等人在1994年提出的apriori算法是生成频繁项集的经典算法[2]。apriori算法使用了level-wise搜索的迭代方法,即用k-项集探索(k+1)-项集。apriori算法在整体上可分为两个部分。

(1)发现频集。这个部分是最重要的,开销相继产生了各种各样的频集算法,专门用于发现频集,以降低其复杂度、提高发现频集的效率。

(2)利用所获得的频繁项集各种算法主要致力产生强关联规则。当然频集构成的联规则未必是强关联规则,还要检验构成的关联规则的支持度和支持度是否超过它们的阈值。apriori算法找出频繁项集分为两步:连接和剪枝。

(1)连接。集合lk-1为频繁k-1项集的集合,它通过与自身连接就可以生成候选k项集的集合,记作ck。

(2)剪枝。频繁k项集的集合lk是ck的子集。剪枝首先利用apriori算法的性质(频繁项集的所有非空子集都是频繁的,如果不满足这个条件,就从候选集合ck中删除)对ck进行压缩;然后,通过扫描所有的事务,确定压缩后ck中的每个候选的支持度;最后与设定的最小支持度进行比较,如果支持度不小于最小支持度,则认为该候选项是频繁的。目前,在互联网技术及科学技术的快速发展下,人工智能、机器识别等技术兴起,关联分析也被越来越多应用其中,并在不断发展中提出了大量的改进算法。

近年来,我国越来越多的学者将数据挖掘关联分析应用于道路交通事故的研究中,主要是分析道路、车辆、行人以及环境等因素与交通事故之间的某种联系。pande和abdel-aty[3]通过关联分析研究了美国佛罗里达州20xx年非交叉口发生的道路交通事故,重点分析了各个不同的影响因素与交通事故之间的内在联系,通过研究得出如下结论,道路照明条件不足是引发道路交通事故的主要因素,除此之外,还发现天气恶劣的环境下道路弯道的直线段也极易发生交通事故。graves[4]利用数据挖掘技术中的关联规则对欧洲道路交通事故进行了分析,主要研究了交通事故与道路设施状况之间的关联,通过研究发现了易导致交通事故发生的各个道路设施状况因素,此研究为欧洲路面建设及投资提供了强大的决策支持。我国学者董立岩在研究道路交通事故数据的文献中,将粗糙集与关联分析进行了融合,提出了基于偏好信息的决策规则简约算法并将其应用其中,通过分析发现了道路交通事故的未知规律。王艳玲通过关联分析中的因子关联树模型重点分析了影响道路交通事故最重要的因子,发现在道路交通事故常见的诱因人、车、路及环境中对事故影响最大的因子是环境。许卉莹等利用关联分析、聚类分析以及决策树分析三种数据挖掘技术对道路交通事故数据进行分析,最终得出了科学的道路交通事故预防和交通安全管理决策依据。尚威等在研究中,对大量的道路交通数据进行了有效整合,并在此基础上按照交通事故相关因素的不同特点整理出与事故发生有关的字段数据,形成新的事故数据记录表,然后再根据多维关联规则对记录的相关数据进行分析,从而发现了事故诱导因素记录字段值和事故结果字段值组成的道路交通事故频繁字段的组合。张听等在充分掌握聚类数据挖掘理论与方法的基础上,提出了多目标聚类分析框架和一个启发式的聚类算法k-wanmi,并将其用在道路交通事故的聚类研究中对不同权重的属性进行了多目标分析。同样,许宏科也利用该方法对公路隧道交通流数据进行了聚类分析,其在研究中不仅明确了隧道交通流的峰值规律,而且还根据这种规律制订了隧道监控设备的不同控制方案,对提高隧道交通安全的水平做了极大的贡献。徐磊和方源敏在研究中,提出了由简化信息熵构造的改进c4.5决策树算法,并将其应用在交通事故数据的研究中,对交通数据进行了正确分类,发现了一些隐藏的规则和知识,为交通管理提供了依据。刘军、艾力斯木吐拉、马晓松运用多维关联规则分析交通事故记录,从而找到导致交通事故发生次数多的主要原因,并且指导相关部门作出相应的决策。杨希刚运用关联规则为现实中的交通事故的预防提供依据。吉林大学的吴昊等人,基于关联规则的理论基础,定义了公路交通事故属性模型,并结合改进后的apriori算法,分析了交通事故历史数据信息,为有关单位和用户寻找道路黑点(即事故多发点)提供了技术支援和决策帮助。

通过数据挖掘中的关联分析方法虽然能够对道路交通事故的相关因素进行清晰的分析,但是目前在这一方面的研究仍有不足之处。因为关联分析在道路交通事故的研究中往往只能片面发现某一种或几种因素影响交通事故的规律,很难将所有影响因素结合起来进行全面系统的分析。然而道路交通事故的发生通常都是由相应因素导致,而后事故当事人意识到危险源的存在并采取措施,直到事故发生的连续过程,整体来看体现了时序性。也就是说,道路交通事故是受到一系列按照时间先后顺序排列的影响因素组合共同作用而发生的,从整体的角度出发研究事故发生机理更加科学。

数据挖掘论文篇三

摘要:人类利用图书馆产生信息活动时所表现出的最基础、最平常、最通用的一种关系,便是用户资源和图书馆之间的关系。从这种关系出发,分析嫁接起这一简单联系的规律,便是数据挖掘技术。本文认为对图书馆用户资源分析研究应以数据挖掘技术为逻辑起点,从云计算、信息共享、数据排查、智能搜索、大数据存储等对图书馆用户资源进行整合和建设。应对信息资源日益丰富的这天,数据挖掘技术对管理图书馆信息资源技术带给了巨大便利。

关键词:数据挖掘;用户资源。

数据挖掘,即数据系统中的信息发现。随着计算机技术,个性是云计算、大数据记忆技术的快速发展,传统的手动查找信息模式被大数据智能检索替代。数据挖掘技术广泛应用于市场、工业、金融行业、科学界、互联网行业以及医疗业。数据挖掘技术在图书馆的应用,能够将海量的用户资源进行聚类、关联、整合,能够对用户搜索记录、图书流通记录、用户借阅信息等数据进行精确预判,发现一些隐蔽的联系,为图书馆采购图书、淘汰文献资料带给科学推荐,也能够为用户带给个性化订阅服务,创新用户服务模式,为图书馆建设整个信息网络带给有力支撑。

1大数据下的图书馆用户资源特征。

图书馆用户资源是透过数字技术进行组织和管理的:(1)经过数据关联分析,把数据库中存在的两个或两个以上用户之间的相同性提取出来,提高支持度和说服力;(2)把用户信息按照相似性归纳成几个类别,建立宏观概念,发现其间的相互关系;其次定义这些相互关系,概念产生以后,即等同于这些相互关系的整体信息,用于建构分类规则或者数据模型;其次利用以上数据找出变化规律,对此规律进行模型化处理,并由数据模型对未知信息进行预判;(3)把用户资源进行时序排序,检索出高重复率的模型;(4)进行偏差比对,检查数据之中的异常状况。图书馆利用超多的用户访问信息获取用户兴趣,发现用户群体,为不同的群体定制信息,还能够建立一个共享信息平台,让不同用户建立网络交流。

1.1数据量大并且分布更广。

大数据形势下,图书馆能够获取的用户资源不仅仅限于用户个人信息和搜索记录,也包括档案、学术研究、教学模式、用户评价和反馈等,数据丰富。同时,数据分布广泛,在互联网时代,可从图书馆应用系统、数据系统记录以及各种网页、移动终端的信息获取,显示出用户资源的分散性。

1.2数据资料多元化,形式灵活化。

数据系统里的存储方式不同,服务器不同,系统开发平台不同,致使许多用户资源无法交流互换。图书馆用户资源有半模型化、模型化和非模型化之分。传统的图书馆用户资源中,用户只是图书资源的使用者,与图书馆之间只是点对点单线互动,用户之间不存在交流,而在大数据网络平台下,用户之间能够建立资料共享互动平台,使得用户资源的资料更加多元化。

2图书馆用户资源利用。

2.1有助于利用数据挖掘技术建立用户资源图书馆。

用户资源图书馆具备信息量大的特点,用户可获得各方各面的信息,且从服务的个性化和全方位化而言,图书馆可根据社会热点或用户需求定制服务。一方面,建立用户资源图书馆,使各类用户信息在同一界面统一呈现,方便用户的选取和检索。另一方面,利用数据挖掘技术建立的用户资源图书馆,服务器众多,具有较强的计算潜力和存储潜力,拥有较高的数据处理潜力,能同时容纳多数用户。因数据量大所导致的硬件费用和后期运行费用剧增,可透过构建用户资源图书馆平台以及应用服务得到解决。为应付不断提高的用户资源存储方面的压为,目前亟需的就是投入超多资金以扩容存储设备,无疑,建立用户资源平台能够解决此问题。

2.2加速图书馆资源的数字化。

强大的互联网呈现功能和用户信息保存的可靠性功能,用户资源存储的复杂性问题可得到很好的解决。其次,数据挖掘技术对于资源整合方面具有优势,透过分布式的存储模式整合超多信息资源带给给用户检索。不同的数据之间的互相操作以及全方位的互联网服务得以实现,很好的解决了资源重复建设的问题。因此,利用数据挖掘使得图书馆资源数字化具备可行性。从这个好处上来看,资源的馆藏数字化将会加快发展,而不只是图书书目的剧增。

2.3降低人力资源成本,使图书馆各类资源得以整合和优化。

随着各类用户资源利用步伐的加快,加之依靠因特网的用户对服务的可行性和效率性要求更高,超多不同体系的服务器布置在机房,系统维护人员的压力也相应増大。透过数据挖掘技术,可有效进行资源整合和优化,无需透过人力进行。

2.4有利于分析用户心理和提升用户体验。

数据挖掘技术能够利用用户资源计算出用户模型,这是研究用户需求、偏好、行为的一种常规方式,一般认为用户模型是对用户在某段时间内相对稳定的信息需求的记录。用户模型反过来对获取用户资源有十分重要的作用,建构用户模型,能够使图书馆更加精深、准确地掌握当前用户资源。透过对用户资源的处理来预测用户需求,进而到达持续提高服务质量和用户满意度的目的。一方面,预判用户心理是利用图书馆用户资源更加深入的表现。随着用户环境与图书馆环境的不断变化,这种预判力覆盖范围已经不单单是用户信息行为的某个过程或某几个过程,相反,用户心理能够对用户需求的强弱、层次、方向产生极为重要的影响,同时也能够对获取用户资源全部过程产生重要影响。另一方面,最先研究用户体验研究当属企业营销活动,主要用来研究用户与企业、产品或服务之间的互动。数据挖掘技术能够更精准预测用户的实际感受,透过研究用户情感体验与用户行为动作,提高用户的满意度,满足用户需求。

3结语。

在数据大爆发时代,重视图书馆用户资源,透过多渠道、多方式汇聚用户资源,采用数据挖掘、数据归档分析等技术,掌握用户资源特征,有助于图书馆精准定位用户群体,对调整图书馆运营策略有重要前置作用,更能创新图书馆服务的资料和形式,实现图书馆资源的有效利用。

参考文献。

[1]陈文伟等.数据挖掘技术[m].北京:北京工业出版社,2002.

[2]郭崇慧等.北京数据挖掘教程[m].北京:清华大学出版社,2005.

[3]徐永丽等.网络环境中用户信息需求障碍分析[j].图书馆理论与实践,2004.

数据挖掘论文篇四

根据20xx年4月国家教育部等五部关于印发《职业学校学生实习管理规定》的通知(教职成[20xx]3号)精神,针对旅游管理专业顶岗实习企业的实际情况以及顶岗实习现状,多角度分析新《职业学校学生顶岗实习管理规定》(以下简称新《规定》)对旅游管理专业顶岗实习的新要求,探索可操作的改进办法,为旅游管理专业实施顶岗实习教学课程提供借鉴和帮助。

(1)实习企业较多,大部分企业需求人数少,实习生分布零散,跟踪管理难度大。

(2)由学校安排实习的,大多是由学校和实习企业签订双方协议,实习生签阅《实习生管理守则》。

(3)中职学校旅游管理专业顶岗实习学生大多未满18周岁。

(4)实习评价体系不完善,对实习生的考核主观成分多,量化标准少。

(5)实习期仍以学生平安险作为学生意外伤害保险,尚未为学生购买专门的实习责任险。

2.新《规定》对顶岗实习的影响及改进方法。

(1)新《规定》再次强调对实习过程的全程指导,并明确提出,对自行安排实习的学生也要进行跟踪管理(新《规定》第七条、第八条)。而旅游管理专业实习企业特别是旅行社,企业多,规模小,需求人数少,实习生分布零散,甚至一个企业只有一个实习生,管理和指导难度大。调查资料显示,旅游专业实习企业中90%是旅行社,而实习生中只有50%在旅行社实习。这种情况实习指导教师如果要实现对每个实习生的指导管理,那么大部分时间都在外跑实习点,学校对专业教师的教学任务、科研任务及其他工作都很难完成。针对这一现状,结合新《规定》要求,可从以下方面着手改进:

1)建立校企生联动实习管理制度。在学校数字化平台增加实习管理模块,将实习操作流程、标准分单元录入模块内,实习生定期在平台上提交单元作业,企业指导教师和学校指导教师定期在平台上提交实习生单元成绩,最后的实习总成绩由单元成绩按比例汇总而成。这样既可参与和掌控实习过程,又能优化实习考核体系,增加量化标准。如数字平台无法立即实施,可先采用电子文档或纸质文档方式。

2)实习面试结束后,组织召开实习指导教师动员会,由学校安排的指导教师和各企业安排的指导教师参加,共同学习和调整实习计划、操作标准、达标考核、指导流程等。

3)实习收尾阶段,组织召开实习总结会,对实习工作进行交流分享,对实际工作中遇到的问题提出改进建议,为即将开展的新一轮实习工作做好铺垫。

(2)新《规定》第十二条、第十三条要求,顶岗实习前学校、企业、学生须签订三方协议,这对制约企业、约束学生有了明确依据。旅游企业淡旺季明显,一些企业到了淡季就将学生解聘;学生实习中无法适应而中途离职的也时有发生,所以协议内容除新《规定》列示内容外,还应增加实习生到岗后应遵守的相关管理制度、学生违反规定的处理办法等内容。

(3)新《规定》第十四条要求,未满18周岁的学生参加顶岗实习,须由监护人签阅知情同意书。大部分中职学校学生在实习时都未达到该年龄标准,因此中职学校在实习前应按户口登记年龄进行一次筛选,将“顶岗实习学生监护人知情同意书”以统一格式发放给未满18周岁学生,并告知监护人,请监护人签阅。“知情同意书”交学校后方可参加实习面试。

(4)新《规定》第三十五条要求,职业学校或实习单位应为实习学生投保实习责任保险。实习责任险是指学生在实习期间,因学校的管理疏忽对学生造成的身体、心理伤害应由学校承担责任的保险。据调查,保险公司目前尚未推出专门的实习责任险,但可先为实习生购买一年期限的意外险。但意外险与实习责任险在投保范围、价格等方面还有差异,所以,职业学校也应同时与保险行业接触,积极推进实习责任险的设计出台。

总之,旅游管理专业顶岗实习在实施过程中还存在一些问题和困难,如企业与学校的需求差异、旅游行业淡旺季与实习期的时间矛盾、实习生生活管理和心理疏导问题等,有待在《新规定》的要求和指导下,与企业深度合作,探索出一套有效的、可操作的顶岗实习实施标准。

数据挖掘论文篇五

古典文学中常见论文这个词,当代,论文常用来指进行各个学术领域的研究和描述学术研究成果的文章,简称为论文。以下就是由编为您提供的。

阿里巴巴成功上市,使马云一时间家喻户晓,同时让更多人看到了电商发展的无限潜力和广阔空间。电子商务是一门交叉性概念,其涉及理论知识和领域极为丰富,譬如:管理学、法学、经济学以及互联网技术等多种领域,是一系列综合性极强的活动。信息技术的进步和社会商业的发展使得经济数字化、竞争全球化、贸易自由化的趋势不断加强。有关电子商务各类的研究如雨后春笋层出不穷,其中物联网技术作为其发展的重要支撑不可忽视。为进一步了解近年来我国基于物联网的电商发展研究热点,笔者通过对cnki收录的相关文献的进行计量分析就此展开研究。

物联网作为一种新兴技术,自20世纪90年代由美国麻省理工学院首次提出以来,其技术实现及应用引起国内外学术界学者广泛关注。物联网起初是基于物流系统提出的,以射频识别技术作为条码识别的替代品,实现对物流系统进行智能化管理。

在研究物联网技术在电子商务应用中,rfid功不可没。rfid(radiofrequencyidentification)技术作为物联网的重要技术,又称电子标签、无线射频识别,是一种通信技术,可通过无线电讯号识别特定目标并读写相关数据,而无需识别系统与特定目标之间建立机械或光学接触。电子商务利用物联网技术通过把人、财、物、商店等实体联结起来并在网络环境下进行交互。在实现交互时,一个关键技术就是利用rfid技术给各个实体标注独一无二的标签从而将不同实体加以区分。物联网技术不仅承担着标注实体角色而且在记录生产过程、跟踪物流以及防伪查询等方面发挥着重要作用。

随着互联网技术的发展和经济全球化浪潮的推动,电子商务问题及物联网技术成为国内外学术界普遍研究热点。国内学者就电子商务发展进程中涉及到的主要环节并结合物联网技术作出相关研究,并在其研究的基础之上根据我国电子商务发展状况提出了针对性建议,这些环节主要包括基础设施建设、支付环境、信用环境以及发展环境的改善等等。

国内对电子商务的研究热度颇高,然而对物联网技术下电子商务的研究相对匮乏。2017年4月,我们在cnki上以“主题=电子商务”为检索式进行检索,查得相关记录83605条;以“主题=‘物联网’+‘电子商务’”为检索式得到609条记录,通过筛选共112篇文献与本文研究相关。在112篇文章中,98篇为非基金文献,基金文献仅占1/8。据调查,近年来我国基于物联网技术对电子商务研究集中在物联网技术在各行业电子商务中的应用、物联网对电商的影响以及基于物联网技术新型模式的研讨等方面。因此,围绕物联网环境下电子商务发展动向及趋势并进行相关比较分析对把握电子商务发展中关键问题具有极强的现实意义和指导意义。

数据挖掘论文篇六

:数据挖掘是一种特殊的数据分析过程,其不仅在功能上具有多样性,同时还具有着自动化、智能化处理以及抽象化分析判断的特点,对于计算机犯罪案件中的信息取证有着非常大的帮助。本文结合数据挖掘技术的概念与功能,对其在计算机犯罪取证中的应用进行了分析。

:数据挖掘技术;计算机;犯罪取证。

随着信息技术与互联网的不断普及,计算机犯罪案件变得越来越多,同时由于计算机犯罪的隐蔽性、复杂性特点,案件侦破工作也具有着相当的难度,而数据挖掘技术不仅能够对计算机犯罪案件中的原始数据进行分析并提取出有效信息,同时还能够实现与其他案件的对比,而这些对于计算机犯罪案件的侦破都是十分有利的。

数据挖掘技术是针对当前信息时代下海量的网络数据信息而言的,简单来说,就是从大量的、不完全的、有噪声的、模糊的随机数据中对潜在的有效知识进行自动提取,从而为判断决策提供有利的信息支持。同时,从数据挖掘所能够的得到的知识来看,主要可以分为广义型知识、分类型知识、关联性知识、预测性知识以及离型知识几种。

根据数据挖掘技术所能够提取的不同类型知识,数据挖掘技术也可以在此基础上进行功能分类,如关联分析、聚类分析、孤立点分析、时间序列分析以及分类预测等都是数据挖掘技术的重要功能之一,而其中又以关联分析与分类预测最为主要。大量的数据中存在着多个项集,各个项集之间的取值往往存在着一定的规律性,而关联分析则正是利用这一点,对各项集之间的关联关系进行挖掘,找到数据间隐藏的关联网,主要算法有fp-growth算法、apriori算法等。在计算机犯罪取证中,可以先对犯罪案件中的特征与行为进行深度的挖掘,从而明确其中所存在的联系,同时,在获得审计数据后,就可以对其中的审计信息进行整理并中存入到数据库中进行再次分析,从而达到案件树立的效果,这样,就能够清晰的判断出案件中的行为是否具有犯罪特征[1]。而分类分析则是对现有数据进行分类整理,以明确所获得数据中的相关性的一种数据挖掘功能。在分类分析的过程中,已知数据会被分为不同的数据组,并按照具体的数据属性进行明确分类,之后再通过对分组中数据属性的具体分析,最终就可以得到数据属性模型。在计算机犯罪案件中,可以将按照这种数据分类、分析的方法得到案件的数据属性模型,之后将这一数据属性模型与其他案件的数据属性模型进行对比,这样就能够判断嫌疑人是否在作案动机、发生规律以及具体特征等方面与其他案件模型相符,也就是说,一旦这一案件的数据模型属性与其他案件的数据模型属性大多相符,那么这些数据就可以被确定为犯罪证据。此外,在不同案件间的共性与差异的基础上,分类分析还可以实现对于未知数据信息或类似数据信息的有效预测,这对于计算机犯罪案件的处理也是很有帮助的。此外,数据挖掘分类预测功能的实现主要依赖决策树、支持向量机、vsm、logisitic回归、朴素贝叶斯等几种,这些算法各有优劣,在实际应用中需要根据案件的实际情况进行选择,例如支持向量机具有很高的分类正确率,因此适合用于特征为线性不可分的案件,而决策树更容易理解与解释。

对于数据挖掘技术,目前的计算机犯罪取证工作并未形成一个明确而统一的应用步骤,因此,我们可以根据数据挖掘技术的特征与具体功能,对数据挖掘技术在计算机犯罪取证中的应用提供一个较为可行的具体思路[2]。首先,当案件发生后,一般能够获取到海量的原始数据,面对这些数据,可以利用fp-growth算法、apriori算法等算法进行关联分析,找到案件相关的潜在有用信息,如犯罪嫌疑人的犯罪动机、案发时间、作案嫌疑人的基本信息等等。在获取这些基本信息后,虽然能够对案件的基本特征有一定的了解,但犯罪嫌疑人却难以通过这些简单的信息进行确定,因此还需利用决策树、支持向量机等算法进行分类预测分析,通过对原始信息的准确分类,可以得到案件的犯罪行为模式(数据属性模型),而通过与其他案件犯罪行为模式的对比,就能够对犯罪嫌疑人的具体特征进行进一步的预测,如经常活动的场所、行为习惯、分布区域等,从而缩小犯罪嫌疑人的锁定范围,为案件侦破工作带来巨大帮助。此外,在计算机犯罪案件处理完毕后,所建立的嫌疑人犯罪行为模式以及通过关联分析、分类预测分析得到的案件信息仍具有着很高的利用价值,因此不仅需要将这些信息存入到专门的数据库中,同时还要根据案件的结果对数据进行再次分析与修正,并做好犯罪行为模式的分类与标记工作,为之后的案件侦破工作提供更加丰富、详细的数据参考。

总而言之,数据挖掘技术自计算机犯罪取证中的应用是借助以各种算法为基础的关联、分类预测功能来实现的,而随着技术的不断提升以及数据库中的犯罪行为模式会不断得到完善,在未来数据挖掘技术所能够起到的作用也必将越来越大。

作者:周永杰单位:河南警察学院信息安全系。

数据挖掘论文篇七

对很多培养机构而言,目前急需解决的问题主要有:如何根据不同成员需求设置合理的课程、如何通过教学方式提高成员学习积极性、如何提高成员培训效果、如何通过考核检验成员学习成果等,都是培养机构发展过程中必须面对的问题。随着我国信息化进程的加快,一些培养机构也开始进行信息化建设,通过信息系统对培训相关事宜进行管理。但目前在针对培养机构的信息系统中,所实现的功能和模块是进行简单的查询、统计。在了解培训评估效果时,目前的信息系统中,学员通过系统对不同课程的教师进行打分,系统自对进行汇总、统计,得出教师评价。但这种汇总、统计是最简单的,对教师评价也缺乏全面性和深度。

大数据时代下,数据信息呈现出海量特点。如何从海量、不完全的信息中寻找到真正有用的信息,是大数据时代中重要的问题。由此便利用到数据挖掘,顾名思义,数据挖掘就是从众多数据信息中寻找到有用、有价值的信息。大数据时代下,教育行业中,信息量也是海量的,要想提高教学质量就需要运用数据挖掘找寻到有用的教育信息,并运用到实际教学中。信息系统通过一段实际应用后,里面存储了大量数据,相应的,学习管理系统也是如此,里面蕴含了大量数据信息。如在线课程等功能中藏有大量师生应用过程中的数据资料。如图1为数据挖掘在培训管理中的流程图。

2.1初步探索。

培训管理系统中一般具有数据统计功能,将相关事宜进行统计。如网络课程开展过程中,数据挖掘在培训管理系统中的应用文/张宏亮在大数据时代,如何使用现有的数据对学员进行培训管理,从而提高培训效率是当前培训管理中所面临的问题。本文分析了数据挖掘在培训管理中的`应用主要表现在初步探索、数据预处理以及数据挖掘过程。其中数据预处理和数据挖掘是培训系统的核心功能。

2.2数据预期处理。

数据预处理时,原始数据库会发生转变,以适应数据挖掘、数据挖掘算法等的要求。在处理结构化的数据时,数据预处理需要完成两项任务,即消除数据缺陷现象的存在和为数据挖掘奠定良好基础。数据处理是对现有的数据进行前期处理,方便后期数据挖掘。如图2为培训管理系统中数据预处理模块。

2.3数据挖掘。

wangj开发了一个将数据挖掘技术与基于模拟的培训相结合的混合框架,以提高培训评估的有效性。以信仰为基础的学习概念,用于从知识/技能水平和信心水平的两个维度来评估学员的学习成果。数据挖掘技术用于分析受训人员的个人资料和基于模拟的培训产生的数据,以评估学员的表现和学习行为。提出的方法论以台湾基于模拟的步兵射击训练的实例为例。结果表明,提出的方法可以准确地评估学员的表现和学习行为,并且可以发现潜在的知识来提高学员的学习成果。bodeacn使用数据挖掘技术进行了培训学习管理,用于分析参加在线两年制硕士学位课程项目管理的学生的表现。系统数据来源是收集学生意见的调查数据,学生记录的操作数据和电子学习的平台记录的学生活动数据。

3、总结。

目前培训机构在进行教学评估时,所选择的指标都是参考其他机构的,并没有真正从自身实际出发进行评估,因此教学评估时存在诸多问题。其中最明显的两个问题是:第一教学评估方式单一化严重,只以数字评估为主;第二评估时容易受各种主观因素影响。

参考文献。

将本文的word文档下载到电脑,方便收藏和打印。

数据挖掘论文篇八

摘要:主要通过对数据挖掘技术的探讨,对职教多年累积的教学数据运用分类、决策树、关联规则等技术进行分析,从分析的结果中发现有价值的数据模式,科学合理地实现教学评估,让教学管理者能够从中发现教学活动中存在的主要问题以便及时改进,进而辅助管理者决策做好教学管理。

关键词:教学评估;数据挖掘;教学评估体系;层次分析法。

1概述。

近年来国家对中等职业教育的发展高度重视,在政策扶持与职教工作者的努力下,职业教育获得了蓬勃的发展。如何提高教学质量、培养合格的高技术人才成为职教工作者研究的课题。各种调查研究结果表明:加强师资队伍的建设,强化教师教学评估对教学质量的提高尤为重要。

所谓教学评估,就是运用系统科学的方法对教学活动或教育行为的价值、效果作出科学的判断过程。教学评估方式要灵活多样,要多途径、多方位、多形式的发挥评估的导学作用,以鼓励评估为主,充分发挥评估的激励功能,促进教学的健康发展。

在中等职业学校多年的教育教学工作中积累了大量的教务管理数据、教师档案数据等,怎样从庞杂大量的数据中挖掘出有效提高教学质量的关键因素是个难题。数据挖掘技术却可以从人工智能的角度很好地解决这一课题。通过数据挖掘技术,得到隐藏在教学数据背后的有用信息,在一定程度上为教学部门提供决策支持信息促使更好地开展教学工作,提高教学质量和教学管理水平,使之能在功能上更加清晰地认识教师教与学生学的关系及促进教育教学改革。

数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。数据挖掘应该更正确地命名为“从数据中挖掘知识”。即数据挖掘是对巨大的数据集进行寻找和分析的计算机辅助处理过程,在这一过程中显现先前未曾发现的模式,然后从这些数据中发掘某些内涵信息,包括描述过去和预测未来趋势的信息。人工智能领域习惯称知识发现,而数据库领域习惯将其称为数据挖掘。

数据挖掘过程包括对问题的理解和提出、数据收集、数据处理、数据变换、数据挖掘、模式评估、知识表示等过程,以上的过程不是一次完成的,其中某些步骤或者全过程可能要反复进行。对问题的理解和提出在开始数据挖掘之前,最基础的工作就是理解数据和实际的业务问题,在这个基础之上提出问题,对目标作出明确的定义。

2.3.1分类分析方法:是通过分析训练集中的数据,为每个类别做出准确的描述或建立分析模型或挖掘出分类规则,以便以后利用这个分类规则对其它数据库中的记录进行分类的方法。2.3.2决策树算法:是一种常用于分类、预测模型的算法,它通过将大量数据有目的的分类,从而找到一些有价值的、潜在的信息。它的主要优点是描述简单,分类速度快,特别适合大规模的数据处理。2.3.3聚类算法:聚类分析处理的数据对象的类是未知的。聚类分析就是将对象集合分组为由类似的对象组成的多个簇的过程。在同一个簇内的对象之间具有较高的相似度,而不同簇内的对象差别较大。2.3.4关联规则算法:侧重于确定数据中不同领域之间的关系,即寻找给定数据集中的有趣联系。提取描述数据库中数据项之间所存在的潜在关系的规则,找出满足给定支持度和置信度阈值的多个域之间的依赖关系。

在以上各种算法的研究中,比较有影响的是关联规则算法。

3教学评估体系。

评价指标体系是教学评估的基础和依据,对评估起着导向作用,因此制定一个科学全面的评价指标体系就成为改革、完善评价的首要目标。评价指标应以指导教学实践为目的,通过评价使教师明确教学过程中应该肯定的和需要改进的地方;以及给出设计评价指标的导向问题。

3.1教学评估体系的构建方法。

层次分析法(简称ahp法)是美国运筹学家t·l·saaty教授在20世纪70年代初期提出的一种简便、灵活而又实用的多准则决策的系统分析方法,其原理是把一个复杂问题分解、转化为定量分析的方法。它需要建立关于系统属性的各因素多级递阶结构,然后对每一层次上的因素逐一进行比较,得到判断矩阵,通过计算判断矩阵的特征值和特征向量,得到其关于上一层因素的相对权重,并可自上而下地用上一层次因素的相对权重加权求和,求出各层次因素关于系统整体属性(总目标层)的综合重要度。

3.2构建教学评估指标体系的作用。

3.2.1构建的教学评估指标,作为挖掘库选择教学信息属性的依据。

3.2.2通过ahp方法,能筛选出用来评价教学质量的相关重要属性,从而入选为挖掘库字段,这样就减去了挖掘库中对于挖掘目标来说影响较小的属性,进而大大减少了挖掘的工作量,提高挖掘效率。3.2.3通过构建教学评估指标,减少了挖掘对象的字段,从而避免因挖掘字段过多,导致建立的决策树过大,出现过度拟合挖掘对象,进而造成挖掘规则不具有很好的评价效果的现象。3.2.4提高教学质量评估实施工作的效率。

4.1学习效果评价学习评价是教育工作者的重要职责之一。评价学生的学习情况,既对学生起到信息反馈和激发学习动机的作用,又是检查课程计划、教学程序以至教学目的的手段,也是考查学生个别差异、便于因材施教的途径。评价要遵循“评价内容要全面、评价方式要多元化、评价次数要多次化,注重自评与互评的有机结合”的原则。利用数据挖掘工具,对教师业务档案数据库、行为记录数据库、奖励处罚数据库等进行分析处理,可以即时得到教师教学的评价结果,对教学过程出现的问题进行及时指正。

另外,这种系统还能够克服教师主观评价的不公正、不客观的弱点,减轻教师的工作量。

4.2课堂教学评价。

课堂教学评价不仅对教学起着调节、控制、指导和推动作用,而且有很强的导向性,是学校教学管理的重要组成部分,是评价教学工作成绩的主要手段。实现对任课教师及教学组织工作效果做出评价,但是更重要的目的是总结优秀的教学经验,为教学质量的稳定提高制定科学的规范。学校每学期都要搞课堂教学评价调查,积累了大量的数据。利用数据挖掘技术,从教学评价数据中进行数据挖掘,将关联规则应用于教师教学评估系统中,探讨教学效果的好坏与老师的年龄、职称、学历之间的联系;确定教师的教学内容的范围和深度是否合适,选择的教学媒体是否适合所选的教学内容和教学对象;讲解的时间是否恰到好处;教学策略是否得当等。从而可以及时地将挖掘出的规则信息反馈给教师。管理部门据此能合理配置班级的上课教师,使学生能够较好地保持良好的学习态度,从而为教学部门提供了决策支持信息,促使教学工作更好地开展。

结束语。

数据挖掘作为一种工具,其技术日趋成熟,在许多领域取得了广泛的应用。在教育领域里,随着数据的不断累积,把数据挖掘技术应用到教学评价系统中,让领导者能够从中发现教师教学活动中的主要问题,以便及时改进,进而辅助领导决策做好学校管理,提高学校管理能力和水平,同时通过建立有效的教学激励机制来达到提高教学质量的目的。这一研究对发展中的职业教育教学管理提出了很好的建议,为教学管理工作的计算机辅助决策增添了新的内容。将数据挖掘技术应用于中职教学评估,设计开发一套行之有效的课堂教学评价系统,是下一步要做的工作,必将有力推动职业教育的快速发展。

数据挖掘论文篇九

数据挖掘技术在各行业都有广泛运用,是一种新兴信息技术。而在线考试系统中存在着很多的数据信息,数据挖掘技在在线考试系统有着重要的意义,和良好的应用前景,从而在众多技术中脱颖而出。本文从对数据挖掘技术的初步了解,简述数据挖掘技术在在线考试系统中成绩分析,以及配合成绩分析,完善教学。

随着计算机网络技术的快速发展,计算机辅助教育的不断普及,在线考试是一种利用网络技术的重要辅助教育手段,其改革有着重要的意义。数据挖掘技术作为一种新兴的信息技术,其包括了人工智能、数据库、统计学等学科的内容,是一门综合性的技术。这种技术的主要特点是对数据库中大量的数据进行抽取、转换和分析,从中提取出能够对教师有作用的关键性数据。将其运用于在线考试系统中,能够很好的处理在线考试中涉及到的数据,让在线考试的实用性和高效性得到进一步的增强,帮助教师更加快速、完整的统计考试信息,完善教学。

数据挖掘技术是从大量数据中"挖掘"出对使用者有用的知识,即从大量的、随机的、有噪声的、模糊的、不完全的实际应用数据中,"挖掘"出隐含在其中但人们事先却不知道的,而又是对人们潜在有用的信息与知识的整个过程。

目前主要的商业数据挖掘系统有sas公司的enterpriseminer,spss公司的clementine,sybas公司的warehousestudio,minersgi公司的mineset,rulequestresearch公司的see5,ibm公司的intelligent,还有coverstory,knowledgediscovery,quest,explora,dbminer,workbench等。

2.1数据分类。

数据挖掘技术通过对数据库中的数据进行分析,把数据按照相似性归纳成若干类别,然后做出分类,并能够为每一个类别都做出一个准确的描述,挖掘出分类的规则或建立一个分类模型。

2.2数据关联分析。

数据库中的数据关联是一项非常重要,并可以发现的知识。数据关联就是两组或两组以上的数据之间有着某种规律性的联系。数据关联分析的作用就是找出数据库中隐藏的联系,从中得到一些对学校教学工作管理者有用的信息。就像是在购物中,就可以通过顾客的购买物品的联系,从中得到顾客的购买习惯。

2.3预测。

预测是根据已经得到的数据,从而对未来的情况做出一个可能性的分析。数据挖掘技术能自动在大型的数据库中做出一个较为准确的分析。就像是在市场投资中,可以通过各种商品促销的数据来做出一个未来商品的促销走势。从而在投资中得到最大的回报。

数据挖掘技术融合了多个学科、多个领域的知识与技术,因此数据挖掘的方法也呈现出很多种类的形式。就目前的统计分析类的数据挖掘技术的角度来讲,光统计分析技术中所用到的数据挖掘模型就回归分析、逻辑回归分析、有线性分析、非线性分析、单变量分析、多变量分析、最近邻算法、最近序列分析、聚类分析和时间序列分析等多种方法。数据挖掘技术利用这些方法对那些异常形式的数据进行检查,然后通过各种数据模型和统计模型对这些数据来进行解释,并从这些数据中找出隐藏在其中的商业机会和市场规律。另外还有知识发现类数据挖掘技术,这种和统计分析类的数据挖掘技术完全不同,其中包括了支持向量机、人工神经元网络、遗传算法、决策树、粗糙集、关联顺序和规则发现等多种方法。

4.1运用关联规则分析教师的年龄对学生考试成绩的影响。

数据挖掘技术中的关联分析在教学分析中,是一种使用频繁,行之有效的方法,它能挖掘出大量数据中项集之间之间有意义的关联联系,帮助知道教师的教学过程。例如在如今的一些高职院校中,就往往会把学生的英语四六级过级率,计算机等级等,以这些为依据来评价教师的教学效果。将数据挖掘技术中的关联规则运用于考试的成绩分析当中,就能够挖掘出一些对学生过级率产生影响的因素,对教师的教学过程进行重要的指导,让教师的教学效率更高,作用更强。

还可以通过关联规则算法,先设定一个最小可信度和支持度,得到初步的关联规则,根据相关规则,分析出教师的组成结构和过级率的影响,从来进行教师队伍的结构调整,让教师队伍更加合理。

4.2采用分类算法探讨对考试成绩有影响的因素。

数据挖掘技术中的分类算法就是对一组对象或一个事件进行归类,然后通过这些数据,可以进行分类模型的建立和未来的预测。分类算法可以进行考试中得到的数据进行分类,然后通过学生的一些基本情况进行探讨一些对考试成绩有影响的因素。分类算法可以用一下步骤实施:

4.2.1数据采集。

这种方法首先要进行数据采集,需要这几方面的数据,学生基本信息(姓名、性别、学号、籍贯、所属院系、专业、班级等)、学生调查信息(比如学习前的知识掌握情况、学习兴趣、课堂学习效果、课后复习时间量等)、成绩(学生平常学习成绩,平常考试成绩,各种大型考试成绩等)、学生多次考试中出现的易错点(本次考试中出现的易错点,以往考试中出现的易错点)。

4.2.2数据预处理。

(1)数据集成。把数据采集过程中得到的多种信息,利用数据挖掘技术中的数据库技术生产相应的学生考试成绩分析基本数据库。(2)数据清理。在学生成绩分析数据库中,肯定会出现一些情况缺失,对于这些空缺处,就需要使用数据清理技术来进行这些数据库中数据的填补遗漏。例如,可以采用忽略元组的方法来删除那些没有参加考试的学生考试数据已经在学生填写的调查数据中村中的空缺项。(3)数据转换。数据转换主要功能是进行进行数据的离散化操作。在这个过程中可以根据实际需要进行分类,比如把考试成绩从0~59的分到较差的一类,将60到80分为中等类,81到100分为优秀等。(4)数据消减。数据消减的功能就是把所需挖掘的数据库,在消减的过程又不能影响到最终的数据挖掘结果。比如在分析学生的基本学习情况的影响因素情况中,学生信息表中中出现的字段很多,可以选择性的删除班别、籍贯等引述,形成一份新的学生基本成绩分析数据表。

4.2.3利用数据挖掘技术,得出结论。

通过数据挖掘技术在在线考试中的应用,得出这些学生数据的相关分析,比如说学生考试中的易错点在什么地方,学生考试成绩的自身原因,学生考试成绩的环境原因,教师队伍的搭配情况等等,从中得出如何调整学校教学资源,教师的教学方案调整等等,从而完善学校对学生的教学。

数据挖掘技术在社会各行各业中都有一定程度的使用,基于其在数据组织、分析能力、知识发现和信息深层次挖掘的能力,在使用中取得了显著的成效,但数据挖掘技术中还存在着一些问题,例如数据的挖掘算法、预处理、可视化问题、模式识别和解释等等。对于这些问题,学校教学管理工作者要清醒的认识,在在线考试系统中对数据挖掘信息做出合理的使用,让数字挖掘技术在在线考试系统中能够更加有效的发挥其长处,避免其在在线考试系统中的的缺陷。

[1]胡玉荣。基于粗糙集理论的数据挖掘技术在高校学生成绩分析中的作用[j]。荆门职业技术学院学报,20xx,12(22):12.

[2][加]韩家炜,堪博(kamberm.)。数据挖掘:概念与技术(第2版)[m]范明,译。北京:机械工业出版社,20xx.

[3]王洁。《在线考试系统的设计与开发》[j]。山西师范大学学报,20xx(2)。

[4]王长娥。数据挖掘技术在教育中的应用[j]。计算机与信息技术,20xx(11)。

数据挖掘论文篇十

摘要:随着科学技术的不断发展,数据挖掘技术也应运而生。为了高效有序的医疗信息管理,需要加强数据挖掘技术在医疗信息管理中的实际应用,从而提升医院的管理水平,为医院的管理工作及资源的合理配置提供多样化发展的可能性。笔者将针对数据挖掘技术在医疗信息管理中的应用这一课题进行相应的探究,从而提出合理的改进建议。

关键词:挖掘技术;医疗信息管理;应用方式。

数据挖掘作为一种数据信息再利用的有效技术,能够有效地为医院的管理决策提供重要信息。它以数据库、人工智能以及数理统计为主要技术支柱进行技术管理与决策。而在医疗信息管理过程之中应用数据挖掘技术能够较好地针对医疗卫生信息进行整理与归类来建立管理模型,形成有效的总结数据的同时能够为医疗工作的高效进行提供有价值的信息。所以笔者将以数据挖掘技术在医疗信息管理中的应用为着手点,从而针对其应用现状进行探究,以此提出加强数据挖掘技术在医疗信息管理中应用的具体措施,希望能够在理论层面上推动医疗信息管理工作的飞跃。

数据挖掘是结合信息收集技术、人工智能处理技术以及分析检测技术等所形成的功能强大的技术。它能够实现对于数据的收集、问题的定义与处理,并且能够较好地对于结果进行解释与评估。在医疗信息管理工作进行的过程之中,应用数据挖掘技术可以较好地加强医疗信息数据模型的建立,同时以多种形式出现,例如文字信息、基本信号信息、图像收集等,也能够用来进行医疗信息的科普与宣传。并且,数据挖掘技术在医疗信息中所体现出的应用方式有所不同,在数据挖掘技术应用过程之中,既可以针对同一类的实物反应出共同性质的基本特征,同时也能够根据具有一定关联性的事物信息来探究差异。这些功能不仅仅能够在医疗信息的管理层面上给予医疗人员较大的信息管理指导,同时在实际的医疗诊断过程之中,也可以向医生提供患者的患病信息,并且辅助治疗的进行[1]。所以,在医疗信息管理中应用数据挖掘技术不仅仅能够推动医疗信息管理水平的提升,也是医院实现现代化、信息化建设的重要体现,需要从根本上明确医疗信息管理应用数据挖掘技术的必要性与基本内涵,从而针对医院的管理现状实现其管理方式与技术应用的转变与优化。

2.1实现建模环节以及数据收集环节的优化。

在应用数据挖掘技术的过程之中,必须基于数据库信息的基础之上,其数据挖掘技术才能够进行相应的规律探究与信息分析,所以需要在源头处加强数据收集环节以及建模环节的优化。以医院中医部门为例,在对于中医处方经验的挖掘方法使用过程之中,需要针对不同的药物进行关联性建模,比如数据库中有基础性药物,针对药物进行频数和次数的统计,然后以此类推,将所有药物都按照出现的频数进行降数排列,从而探究参考价值。建模环节以及数据收集环节是医疗信息管理过程的根本,所以需要做好对于建模环节以及数据收集环节的优化,才能够为数据挖掘技术的应用奠定相应的基础[2]。

想要在医疗信息管理过程之中,加强对于数据挖掘技术的有效应用,就需要从数据挖掘技术应用类别处进行着手,从而提升技术应用的针对性与有效性。常见的技术应用类别有:医院资源配置方面、病患区域管理方面、医疗卫生质量管理方面、医疗急诊管理方面、医院经济管理方面以及医疗卫生常见病宣传方面等,数据挖掘技术都可以在这些类别之中实现应用,但是在应用的过程之中也有所不同。以病房区域管理为例,在应用数据挖掘技术之前,首先需要明确不同的科室状况以及病房区域分配状况等,加强病患区域的指标分析,因为病房管理不仅仅影响到科室的工作效率与工作效果,同时也是医疗物资分配与人员编制的主要参考标准。其次利用数据挖掘技术能够较好地实现不同科室工作效率、质量管理质量以及经济收益等多种指标的评估,建立其科室的运营模型,从而实现科室的又好又快发展。比如使用数据挖掘技术建立其病区管理的标准模型以及统计指标,从而计算出科室动态的工作模型以及病床动态的周转次数等[3]。另外在医疗质量管理过程之中,数据挖掘技术提供的不仅仅是资料数据的参考以及疾病的诊断,也能够针对临床的治疗效果进行分析与评价,并且能够预测治疗状况:可以利用医院的医疗数据库,对于病人的基本患病信息进行分类,从而比对死亡率、治愈率等多个数据,实现治疗方案的制订。而在医疗质量管理过程之中也有很多的影响因素,例如基础医疗设备、病床周转次数、病种治愈记录等,所以也可以利用数据挖掘技术来进一步加强其多种数据之间的关联性,从而为提升医院的社会效益与经济效益提出合理的参考性建议。

医院加强数据挖掘技术应用方向的探索上,可以从客户拓展这个角度出发实现对于医疗信息管理。例如通过数据挖掘技术多方进行患者信息比对,同时制订完善的医疗服务影响策略方式,加强对于客户行为的分析;在数据挖掘的基础之上,增强其技术应用的实用性,在分析的基础之上比对自身的竞争优势,实现医院资源的合理规划与合理配置,例如药品、资金以及疾病诊断等,从而实现经营状况的优化。目前医院也逐步向现代化、信息化方向发展,无论是信息管理还是医疗技术方面,医院都已经成为了一个信息化的综合行业体系,所以在加强数据挖掘应用的过程之中,还需要加强数据信息的管理,实现数据挖掘结果的维护,从而提升医院的决策能力,实现数据挖掘技术的高效应用。

3结语。

医院在目前的医疗信息管理过程之中,还有很大的发展空间,需要综合利用数据挖掘技术,实现其信息管理水平的提升。通过明确数据挖掘技术的应用方向、应用类别以及建模数据环节的优化等,促进医院管理水平的提升,实现数据挖掘技术应用效果的提升.

参考文献:

[2]廖亮.数据挖掘技术在医疗信息管理中的应用[j].中国科技信息,20xx(11):54,56.

数据挖掘论文篇十一

近些年来,已经有越来越多的企业把通信、网络技术和计算机应用引入企业的日常管理工作和业务开发处理当中,企业的各类信息化程度也在不断提高。现代科技信息技术的广泛应用已经显著的提高了企业的工作效率和经济效益。但是,在使用信息技术给企业带来的方便、快捷的同时,也不断的出现了新的问题和需求。企业经过多年积累了大量的历史数据,这些数据对企业当前的日常经营活动几乎没有任何的使用价值,成了留之无用弃之可惜的累赘。而且储藏这些历史数据会对企业造成很大的困难和费用开销。为此数据挖掘技术应用在网络营销中势在必行,全面细致的分析数据库资源并从中提取有价值的信息来对商业决策进行支持,从而来控制运营成本、提高经济效益。本文将从网络营销中数据挖掘技术的几个应用进行探讨和分析。

1客户关系管理。

客户关系管理在网络营销,商业竞争是一家以客户为中心的竞技状态的客户,留住客户,扩大客户基础,建立密切的客户关系,客户需求分析和创造客户需求等,是非常关键的营销问题。客户关系管理,营销和信息技术领域是一个新概念,这在90年代初,软件产品在上世纪90年代后期出现的诞生。目前,在国内和国外的此类产品的研究和发展阶段。然而,继续与数据仓库和数据挖掘技术的进步和发展,客户关系管理,也是对实际应用阶段。crm的目标是管理者与客户的互动,提升客户价值,提高客户满意度,提高客户的忠诚度,还发现,市场营销和销售渠道,然后寻找新客户,提高客户的利润贡献率的最终目的是为了推动社会和经济效益。客户关系管理的目的,应用是改善企业与客户的关系,它是企业和服务本质管理和协调,以满足客户的需求,企业政策支持这项工作,并联系客户服务加强管理,提高客户满意度和品牌忠诚度。

然而,数据挖掘可以应用到很多方面的crm和不同阶段,包括以下内容:

(1)“一对一”营销的内部工作人员认识到,客户是在这个领域的企业,而不是贸易发展生存的关键。与每一个客户接触的过程,也是了解客户的进程,而且也让客户了解业务流程。

(2)企业与客户之间的销售应该是一种商业关系不断向前发展。客户和营销公司成立这种方式,而且有许多方法可以使这种与客户的关系,往往以改善包括:延长时间,客户关系和维护客户关系,以进一步加强相互交往过程中,公司可以在对方取得联系更多的利润。

(3)客户对客户盈利能力分析。我们的客户盈利能力是非常不同的,如果你不明白客户盈利能力,很难制定有效的营销策略,以获取最有价值的客户,或进一步提高客户的忠诚度的价值。数据挖掘技术可以用来预测客户在市场条件变化不同的盈利能力。它可以找到所有这些行为和使用模型来预测客户行为模式的客户交易盈利水平或新客户找到高利润。

(4)在所有部门维护客户关系的竞争日趋激烈,企业获得新客户的成本上升,因此,保持现有客户的关系变得越来越重要。对于企业客户可分为三大类:没有价值或者低价值的客户,不容易失去宝贵的客户,并不断寻找更多的优惠,更有价值的服务给客户。前两个类型的`客户,客户关系管理,现代化,然而,最具潜力的市场活动,是第三个层次的用户,而且还特别需求和营销工具,以保护客户,可以减缓企业经营成本,而且还获得了宝贵的客户。数据挖掘还可以发现,由于客户流失,该公司能够满足这些客户的需要,采取适当措施,保持销售。

(5)客户访问企业业务系统资源,包括能够获得新客户的关键指标。为了提供这些新的资源,包括企业搜索客户谁不知道该产品的客户,可能是竞争对手,服务客户。这些细分客户,潜在客户可以帮助企业完成检查。

2企业经营定位。

通过挖掘客户的有关数据,可以对客户进行分类,找出其相同点和不同点,以便为客户提供个性化的产品和服务,使企业和客户之间能够通过网络进行有效的沟通和信息交流。例如,关联分析,客户在购买某种商品时,有可能会连带着购买其他的相关产品,这样购买的某种商品和连带购买的其他相关产品之间就存在着某种关联,企业可以针对这种关联进行分析,分析出规律,已制定有效的营销策略来长效的起到吸引客户连带消费,购买其他产品的营销策略。它能够智能化地从大量的数据中提取出有用的信息和知识,为企业的管理人员提供决策支持。数据挖掘技术使数据库技术进入了一个更高级的阶段,它不仅能对过去的数据进行查询和遍历,并且能够找出过去数据之间的潜在联系,从而促进信息的传递。

客户群体的划分也会用到数据挖掘,没有基于数据挖掘的客户划分,就没有真正的差异化、个性化营销,就没有现代营销的根本。做为企业的领导者,不管你的企业是卖产品的还是卖服务,第一个应该准确把握的商业问题就是你的目标客户群体,他们是谁,有什么特点和行为模式,有那些独特的喜好可以作为营销的突破口,有多大的多长久的赢利价值。这些问题是你整个商业运做的核心和基础,不了解你的客户,下面的路就根本别指望能走下去了。数据挖掘营销应用中的客户群体划分可以科学有效的解决这个问题,也能给企业找到一个合理的营销定位。

3客户信用风险控制。

数据挖掘技术在90年代开始应用于信用评估与风险分析中。企业在进行网络营销的过程中会受到各种各样的来自买方的信用风险的威胁,随着市场竞争的加剧,贸易信用已经成为企业成功开发客户和加强客户关系的重要条件。客户信用管理主要是搜集储存客户信息,因为客户既是企业最大的财富来源,也是风险的主要来源。为了让企业在这方面更少的受到威胁,可以利用数据挖掘技术发现企业经常面临的诈骗行为或延付货款行为,进而进行回避。同时尽可能把客户信用风险控制在交易发生之前是成功信用管理的根本。因此,充分获取客户的详细资料并做出安全的决策非常重要。

(3)数据挖掘技术也可以适应各种形式的数据,数据挖掘可以是连续的数据,离散数据,而其他形式的数据处理,以便在更大的灵活性,在选择指标时,更加符合客观实际的信用风险模型。

为现代信用风险管理方法有两个:第一是所谓的指数法,其基础是信用相关业务的某些特性来企业信用评估;第二类是所谓的结构化方法,根据历史数据和市场数据模拟在企业资产价值变化的动态持续的过程,然后确定其企业信用的位置。

网络营销作为适应网络经济时代的网络虚拟市场的新营销理论,是市场营销理念在新时期的发展和应用。它能够智能化地从大量的数据中提取出有用的信息和知识,为企业的管理人员提供决策支持。数据挖掘技术使数据库技术进入了一个更高级的阶段,它不仅能对过去的数据进行查询和遍历,并且能够找出过去数据之间的潜在联系,从而促进信息的传递。

1.维护原有客户,挖掘潜在新客户。

网络营销中销售商可以通过客户的访问记录来挖掘出客户的潜在信息,跟据客户的兴趣与需求向客户有针对性的做个性化的推荐,制定出客户满意的产品服务。在做好维护原有老客户的基础上,通过对数据的挖掘,利用分类技术,也可以寻找出潜在的客户,通过对web日志的挖掘,可以对已经存在的访问者进行分类,根据这种精细的分类,还可以找到潜在的新客户。

2.制定营销策略,优化促销活动。

对于保留的商品访问记录和销售记录进行挖掘,可以发现客户的访问规律,了解客户消费的生命周期,起伏规律,结合市场形势的变化,针对不同的商品和客户群制定不同的营销策略,保证促销活动针对客户群有的放矢,收到意想不到的效果。

3.降低运营成本,提高竞争力。

网络营销的管理者可以通过数据挖掘发现市场反馈的可靠信息,预测客户未来的购买行为,有针对性的进行营销活动,还可以根据产品访问者的浏览习惯来觉定产品广告的位置,使广告有针对性的起到宣传的效果。从而提高广告的投资回报率,从而能降低运营成本,提高且的核心竞争力。

4.对客户进行个性化推荐。

根据客户采矿活动对网络规则,有针对性的网络营销平台,提供“个性化”服务。个性化服务是在服务策略和服务内容的不同客户的不同,其本质是客户为中心的web服务的需求。它通过收集和分析客户资料,以了解客户的利益和购买行为,然后采取主动,以达到建议的服务。

5.完善网络营销网站的设计。

参考文献。

1冯英健著,《网络营销基础与实践》,清华大学出版社,1月第1版。

2.,and.sky-shairoh,esinknowledgediscoveryanddatamining.aaai/mitpress,menlopark,ca.:。

数据挖掘论文篇十二

数据挖掘又名数据探勘、信息挖掘。它是数据库知识筛选中非常重要的一步。数据挖掘其实指的就是在大量的数据中通过算法找到有用信息的行为。一般情况下,数据挖掘都会和计算机科学紧密联系在一起,通过统计集合、在线剖析、检索筛选、机器学习、参数识别等多种方法来实现最初的目标。统计算法和机器学习算法是数据挖掘算法里面应用得比较广泛的两类。统计算法依赖于概率分析,然后进行相关性判断,由此来执行运算。

而机器学习算法主要依靠人工智能科技,通过大量的样本收集、学习和训练,可以自动匹配运算所需的相关参数及模式。它综合了数学、物理学、自动化和计算机科学等多种学习理论,虽然能够应用的领域和目标各不相同,但是这些算法都可以被独立使用运算,当然也可以相互帮助,综合应用,可以说是一种可以“因时而变”、“因事而变”的算法。在机器学习算法的领域,人工神经网络是比较重要和常见的一种。因为它的优秀的数据处理和演练、学习的能力较强。

而且对于问题数据还可以进行精准的识别与处理分析,所以应用的频次更多。人工神经网络依赖于多种多样的建模模型来进行工作,由此来满足不同的数据需求。综合来看,人工神经网络的建模,它的精准度比较高,综合表述能力优秀,而且在应用的过程中,不需要依赖专家的辅助力量,虽然仍有缺陷,比如在训练数据的时候耗时较多,知识的理解能力还没有达到智能化的标准,但是,相对于其他方式而言,人工神经网络的优势依旧是比较突出的。

2以机器学习算法为基础的gsm网络定位。

2.1定位问题的建模。

建模的过程主要是以支持向量机定位方式作为基础,把定位的位置栅格化,面积较小的栅格位置就是独立的一种类别,在定位的位置内,我们收集数目庞大的终端测量数据,然后利用计算机对测量报告进行分析处理,测量栅格的距离度量和精准度,然后对移动终端栅格进行预估判断,最终利用机器学习进行分析求解。

2.2采集数据和预处理。

本次研究,我们采用的模型对象是我国某一个周边长达10千米的二线城市。在该城市区域内,我们测量了四个不同时间段内的数据,为了保证机器学习算法定位的精准性和有效性,我们把其中的三批数据作为训练数据,最后一组数据作为定位数据,然后把定位数据周边十米内的前三组训练数据的相关信息进行清除。一旦确定某一待定位数据,就要在不同的时间内进行测量,按照测量出的数据信息的经纬度和平均值,再进行换算,最终,得到真实的数据量,提升定位的速度以及有效程度。

2.3以基站的经纬度为基础的初步定位。

用机器学习算法来进行移动终端定位,其复杂性也是比较大的,一旦区域面积增加,那么模型和分类也相应增加,而且更加复杂,所以,利用机器学习算法来进行移动终端定位的过程,会随着定位区域面积的增大,而耗费更多的时间。利用基站的经纬度作为基础来进行早期的定位,则需要以下几个步骤:要将边长为十千米的正方形分割成一千米的小栅格,如果想要定位数据集内的相关信息,就要选择对边长是一千米的小栅格进行计算,而如果是想要获得边长一千米的大栅格,就要对边长是一千米的栅格精心计算。

2.4以向量机为基础的二次定位。

在完成初步定位工作后,要确定一个边长为两千米的正方形,由于第一级支持向量机定位的区域是四百米,定位输出的是以一百米栅格作为中心点的经纬度数据信息,相对于一级向量机的定位而言,二级向量机在定位计算的时候难度是较低的`,更加简便。后期的预算主要依赖决策函数计算和样本向量机计算。随着栅格的变小,定位的精准度将越来越高,而由于增加分类的问题数量是上升的,所以,定位的复杂度也是相对增加的。

2.5以k-近邻法为基础的三次定位。

第一步要做的就是选定需要定位的区域面积,在二次输出之后,确定其经纬度,然后依赖经纬度来确定边长面积,这些都是进行区域定位的基础性工作,紧接着就是定位模型的训练。以k-近邻法为基础的三次定位需要的是综合训练信息数据,对于这些信息数据,要以大小为选择依据进行筛选和合并,这样就能够减少计算的重复性。当然了,选择的区域面积越大,其定位的速度和精准性也就越低。

3结语。

近年来,随着我国科学技术的不断发展和进步,数据挖掘技术愈加重要。根据上面的研究,我们证明了,在数据挖掘的过程中,应用机器学习算法具有举足轻重的作用。作为一门多领域互相交叉的知识学科,它能够帮助我们提升定位的精准度以及定位速度,可以被广泛的应用于各行各业。所以,对于机器学习算法,相关人员要加以重视,不断的进行改良以及改善,切实的发挥其有利的方面,将其广泛应用于智能定位的各个领域,帮助我们解决关于户外移动终端的定位的问题。

参考文献。

[2]李运.机器学习算法在数据挖掘中的应用[d].北京邮电大学,.

数据挖掘论文五:题目:软件工程数据挖掘研究进展。

摘要:数据挖掘是指在大数据中开发出有价值信息数据的过程。计算机技术的不断进步,通过人工的方式进行软件的开发与维护难度较大。而数据挖掘能够有效的提升软件开发的效率,并能够在大量的数据中获得有效的数据。文章主要探究软件工程中数据挖掘技术的任务和存在的问题,并重点论述软件开发过程中出现的问题和相关的解决措施。

关键词:软件工程;数据挖掘;解决措施;。

在软件开发过程中,为了能够获得更加准确的数据资源,软件的研发人员就需要搜集和整理数据。但是在大数据时代,人工获取数据信息的难度极大。当前,软件工程中运用最多的就是数据挖掘技术。软件挖掘技术是传统数据挖掘技术在软件工程方向的其中一部分。但是它具有自身的特征,体现在以下三个方面:。

(1)在软件工程中,对有效数据的挖掘和处理;。

(2)挖掘数据算法的选择问题;。

(3)软件的开发者该如何选择数据。

1在软件工程中数据挖掘的主要任务。

在数据挖掘技术中,软件工程数据挖掘是其中之一,其挖掘的过程与传统数据的挖掘无异。通常包括三个阶段:第一阶段,数据的预处理;第二阶段,数据的挖掘;第三阶段,对结果的评估。第一阶段的主要任务有对数据的分类、对异常数据的检测以及整理和提取复杂信息等。虽然软件工程的数据挖掘和传统的数据挖掘存在相似性,但是也存在一定的差异,其主要体现在以下三个方面:。

1.1软件工程的数据更加复杂。

软件工程数据主要包括两种,一种是软件报告,另外一种是软件的版本信息。当然还包括一些软件代码和注释在内的非结构化数据信息。这两种软件工程数据的算法是不同的,但是两者之间又有一定的联系,这也是软件工程数据挖掘复杂性的重要原因。

1.2数据分析结果的表现更加特殊。

传统的数据挖掘结果可以通过很多种结果展示出来,最常见的有报表和文字的方式。但是对于软件工程的数据挖掘来讲,它最主要的职能是给软件的研发人员提供更加精准的案例,软件漏洞的实际定位以及设计构造方面的信息,同时也包括数据挖掘的统计结果。所以这就要求软件工程的数据挖掘需要更加先进的结果提交方式和途径。

1.3对数据挖掘结果难以达成一致的评价。

我国传统的数据挖掘已经初步形成统一的评价标准,而且评价体系相对成熟。但是软件工程的数据挖掘过程中,研发人员需要更多复杂而又具体的数据信息,所以数据的表示方法也相对多样化,数据之间难以进行对比,所以也就难以达成一致的评价标准和结果。不难看出,软件工程数据挖掘的关键在于对挖掘数据的预处理和对数据结果的表示方法。

2软件工程研发阶段出现的问题和解决措施。

软件在研发阶段主要的任务是对软件运行程序的编写。以下是软件在编码和结果的提交过程中出现的问题和相应的解决措施。

2.1对软件代码的编写过程。

该过程需要软件的研发人员能够对自己需要编写的代码结构与功能有充分的了解和认识。并能够依据自身掌握的信息,在数据库中搜集到可以使用的数据信息。通常情况下,编程需要的数据信息可以分为三个方面:。

(1)软件的研发人员能够在已经存在的代码中搜集可以重新使用的代码;。

(2)软件的研发人员可以搜寻可以重用的静态规则,比如继承关系等。

(3)软件的开发人员搜寻可以重用的动态规则。

包括软件的接口调用顺序等。在寻找以上信息的过程中,通常是利用软件的帮助文档、寻求外界帮助和搜集代码的方式实现,但是以上方式在搜集信息过程中往往会遇到较多的问题,比如:帮助文档的准确性较低,同时不够完整,可利用的重用信息不多等。

2.2对软件代码的重用。

在对软件代码重用过程中,最关键的问题是软件的研发人员必须掌握需要的类或方法,并能够通过与之有联系的代码实现代码的重用。但是这种方式哦足迹信息将会耗费工作人员大量的精力。而通过关键词在代码库中搜集可重用的软件代码,同时按照代码的相关度对搜集到的代码进行排序,该过程使用的原理就是可重用的代码必然模式基本类似,最终所展现出来的搜索结果是以上下文结构的方式展现的。比如:类与类之间的联系。其实现的具体流程如下:。

(1)软件的开发人员创建同时具备例程和上下文架构的代码库;。

(2)软件的研发人员能够向代码库提供类的相关信息,然后对反馈的结果进行评估,创建新型的代码库。

(3)未来的研发人员在搜集过程中能够按照评估结果的高低排序,便于查询,极大地缩减工作人员的任务量,提升其工作效率。

2.3对动态规则的重用。

软件工程领域内对动态规则重用的研究已经相对成熟,通过在编译器内安装特定插件的方式检验代码是否为动态规则最适用的,并能够将不适合的规则反馈给软件的研发人员。其操作流程为:。

(1)软件的研发人员能够规定动态规则的顺序,主要表现在:使用某一函数是不能够调用其他的函数。

(2)实现对相关数据的保存,可以通过队列等简单的数据结构完成。在利用编译拓展中检测其中的顺序。

(3)能够将错误的信息反馈给软件的研发人员。

3结束语。

在软件工程的数据挖掘过程中,数据挖掘的概念才逐步被定义,但是所需要挖掘的数据是已经存在的。数据挖掘技术在软件工程中的运用能够降低研发人员的工作量,同时软件工程与数据挖掘的结合是计算机技术必然的发展方向。从数据挖掘的过程来讲,在其整个实施过程和周期中都包括软件工程。而对数据挖掘的技术手段来讲,它在软件工程中的运用更加普遍。在对数据挖掘技术的研究过程中可以发现,该技术虽然已经获得一定的效果,但是还有更多未被挖掘的空间,还需要进一步的研究和发现。

参考文献。

[1]王艺蓉.试析面向软件工程数据挖掘的开发测试技术[j].电子技术与软件工程,(18):64.

[4]刘桂林.分析软件工程中数据挖掘技术的应用方式[j].中国新通信,2017,19(13):119.

数据挖掘论文篇十三

随着城市化建设步伐的加快,城市中人口的集中,产生了许多安全隐患,尤其是火灾隐患,所以消防灭火工作变成了现今城市建设中的重要工作。消防灭火救援中最重要的是对水的需求,做好城市消防灭火工作的基础是有效设置好城市给水系统的合理设置。数据挖掘就是将大量的随机化数据编程课被理解的智慧的过程,使用数据挖掘等相关知识可以对城市消防及水系统中的相关信息进行有效处理。本文通过对数据挖掘技术进行分析,从而得出其在消防灭火救援工作中的作用,从而分析消防灭火救援中数据挖掘的应用。

数据挖掘是20世纪80年代产生的一种用来分析信息数据的一种专业技术,常常用来决策或者解决商业方面的问题。数据挖掘的操作方法是对一些大量的数据进行提纯,运用一定的手段对数据进行处理,将数据中的有效信息提取出来,实现数据和信息的有效转化。数据挖掘就是将大量的随机化数据编程课被理解的智慧的过程。数据挖掘的过程主要可以分为以下几步:首先是数据的准备,将被挖掘的数据进行详细罗列,其次是数据挖掘,也就是从数据样本中提取有效信息,最后是对挖掘结果的解释。数据挖掘是一项十分综合性的技术,他是数理统计、数据库、模糊数学等相关技术的综合体,是一项多种数学学科交叉的综合性学科,数据挖掘的价值主要表现在以下几个方面:可视化、估值与预测、分类与聚类、关联分析以及异类分析几种。

数据挖掘作为综合性的统计技术,在各行业的作用不容小视,其中运用于消防灭火救援过程中也是十分有效的。而数据挖掘在消防灭火救援中被应用的优势也就是其发挥的作用主要表现在以下几点:首先是使用数据挖掘等相关知识可以对城市消防及水系统中的相关信息进行有效处理。其处理步骤为:(1)根据消防灭火救援中的供水需求进行分析,在现有的数据库中寻找相关数据,并将数据进行整合。(2)运用数据仓库分析技术对数据进行初步处理,粗略计算出积水系统的供水量。(3)采用聚类分析方法对数据进行分类,有效规划好城市消防给水系统的大框架。其次,数据挖掘技术中所涉及的数据仓库技术能够有效解决当前消防数据库中信息利用率低的缺点,能够有效整合多个数据库中的数据建立专门的数据库,并能够对数据进行分析,对现有的消防灭火救援工作提供便利。此外,我国现有的地面水源的有效利用率还不是很高,江河湖海中的'水大部分都是火灾的时候临时抽取,难免有些处理不当,数据挖掘能够有效整理消防供水系统,将地面水源规划到消防供水的库存中,提高地面水源利用率,也有效降低管理成本。最后,数据挖掘中的聚类分析方法能够有效对城市中所发生的活在源头和隐患进行整理和排查,有效防止火灾的发生,也能够进一步优化城市消防系统,扩大消防供水系统的覆盖点,完善城市消防灭火系统,而且数据挖掘还能够对不同的建筑分步进行细化分类,对不同程度的火灾所需要的水量进行预测,从而能够实现对城市消火栓的分布情况进行科学性处理。

消防灭火救援中最重要的是对水的需求,做好城市消防灭火工作的基础是有效设置好城市给水系统的合理设置。所以消防灭火救援中数据挖掘的应用要从消防的供水需求出发,对现有的数据库进行分析和整合,确定需水状况,进一步对事实表和维度进行划分,建立新的数据仓库,为消防给水系统的运行提供决策方面的支持。步骤如下:

(一)建立数据模型。

从上文分析来看,建立新的数据库要具有以下功能:火灾风险评估功能、消防给水功能以及历史或再分析功能。而要做到这三点,就要对数据仓库进行分类,建立三层分类模型,分别是概念模型、逻辑模型和物理模型三类。概念模型的设计主要以信息包图为基础进行,首先要确定信息包图的指标、维度和类别三大方面,然后再对实体对象进行分析,从而完成信息包图;逻辑模型的基础是星型图,它的主要方面是指标实体、维度实体和详细类别实体三种,主要反映概念模型中涉及的实体间的关系;物理模型的基础是数据库表,主要是将指标的实体转化成的数据编成表,主要内容的是星型图中各种中心和边角上的数据信息,能够有效形成火灾风险防控的星星模式结构。

(二)联机网络进一步分析。

这一步是运用网络工具进行联机分析,主要的步骤为:首先定义控制流任务,运用合适的多媒体工具进行数据的提取和转换,而且还要确保数据的时效性;其次是建立对微数据,将数据仓库中的事实表和维表从而为表转换为多维化数据。

(三)聚类方法分析火灾风险。

聚类分析是数据挖掘技术中一种重要的数据处理方法,主要原理是将指标量变为数据量,主要步骤是:建立指标体系――确定指标因子的权重――量化指标――实现聚类分析。通过聚类分析可以对不同地区的火灾等级进行分类,评估不同地区的火灾隐患严重度,从而进行供水系统的有效安排,保障该区域的消防灭火工作的进行,也能够对火灾进行有效的防控。结语综上所述,数据挖掘技术是时代发展的成果,是对数据进行统计的重要技术,在各行业的应用都很广泛。本文通过分析消防灭火救援中数据挖掘的应用,对数据挖掘技术有了初步了解。虽然我国消防工作中设计了大量数据,对于数据处理的技术还很生疏使得数据的利用率比较低,本文将消防工作和数据挖掘技术联系起来,能够对消防工作中的数据处理起到一些参考作用,相信随着时间发展,数据挖掘终将运用于消防领域中,为我国未来的建设贡献一份力量。

参考文献。

[1]楼巍.面向大数据的高维数据挖掘技术研究[d].上海大学,.

[2]谢道文.基于数据挖掘的火灾分析模型及应用研究[d].中南大学,.

[4]张大可.数据挖掘技术在火灾事故分析中的应用研究[d].首都经济贸易大学,.

数据挖掘论文篇十四

摘要:数据挖掘是指在大数据中开发出有价值信息数据的过程。计算机技术的不断进步,透过人工的方式进行软件的开发与维护难度较大。而数据挖掘能够有效的提升软件开发的效率,并能够在超多的数据中获得有效的数据。文章主要探究软件工程中数据挖掘技术的任务和存在的问题,并重点论述软件开发过程中出现的问题和相关的解决措施。

关键词:软件工程;数据挖掘;解决措施;。

在软件开发过程中,为了能够获得更加准确的数据资源,软件的研发人员就需要搜集和整理数据。但是在大数据时代,人工获取数据信息的难度极大。当前,软件工程中运用最多的就是数据挖掘技术。软件挖掘技术是传统数据挖掘技术在软件工程方向的其中一部分。但是它具有自身的特征,体此刻以下三个方面:。

(1)在软件工程中,对有效数据的挖掘和处理;。

(2)挖掘数据算法的选取问题;。

(3)软件的开发者该如何选取数据。

1在软件工程中数据挖掘的主要任务。

在数据挖掘技术中,软件工程数据挖掘是其中之一,其挖掘的过程与传统数据的挖掘无异。通常包括三个阶段:第一阶段,数据的预处理;第二阶段,数据的挖掘;第三阶段,对结果的评估。第一阶段的主要任务有对数据的分类、对异常数据的检测以及整理和提取复杂信息等。虽然软件工程的数据挖掘和传统的数据挖掘存在相似性,但是也存在必须的差异,其主要体此刻以下三个方面:。

1.1软件工程的数据更加复杂。

软件工程数据主要包括两种,一种是软件报告,另外一种是软件的版本信息。当然还包括一些软件代码和注释在内的非结构化数据信息。这两种软件工程数据的算法是不同的,但是两者之间又有必须的联系,这也是软件工程数据挖掘复杂性的重要原因。

1.2数据分析结果的表现更加特殊。

传统的数据挖掘结果能够透过很多种结果展示出来,最常见的有报表和文字的方式。但是对于软件工程的数据挖掘来讲,它最主要的职能是给软件的研发人员带给更加精准的案例,软件漏洞的实际定位以及设计构造方面的信息,同时也包括数据挖掘的统计结果。所以这就要求软件工程的数据挖掘需要更加先进的结果提交方式和途径。

1.3对数据挖掘结果难以达成一致的评价。

我国传统的数据挖掘已经初步构成统一的评价标准,而且评价体系相对成熟。但是软件工程的数据挖掘过程中,研发人员需要更多复杂而又具体的数据信息,所以数据的表示方法也相对多样化,数据之间难以进行比较,所以也就难以达成一致的评价标准和结果。不难看出,软件工程数据挖掘的关键在于对挖掘数据的预处理和对数据结果的表示方法。

2软件工程研发阶段出现的问题和解决措施。

软件在研发阶段主要的任务是对软件运行程序的编写。以下是软件在编码和结果的提交过程中出现的问题和相应的解决措施。

2.1对软件代码的编写过程。

该过程需要软件的研发人员能够对自己需要编写的代码结构与功能有充分的了解和认识。并能够依据自身掌握的信息,在数据库中搜集到能够使用的数据信息。通常状况下,编程需要的数据信息能够分为三个方面:。

(1)软件的研发人员能够在已经存在的代码中搜集能够重新使用的代码;。

(2)软件的研发人员能够搜寻能够重用的静态规则,比如继承关系等。

(3)软件的开发人员搜寻能够重用的动态规则。

包括软件的接口调用顺序等。在寻找以上信息的过程中,通常是利用软件的帮忙文档、寻求外界帮忙和搜集代码的方式实现,但是以上方式在搜集信息过程中往往会遇到较多的问题,比如:帮忙文档的准确性较低,同时不够完整,可利用的重用信息不多等。

2.2对软件代码的重用。

在对软件代码重用过程中,最关键的问题是软件的研发人员务必掌握需要的类或方法,并能够透过与之有联系的代码实现代码的重用。但是这种方式哦足迹信息将会耗费工作人员超多的精力。而透过关键词在代码库中搜集可重用的软件代码,同时按照代码的相关度对搜集到的代码进行排序,该过程使用的原理就是可重用的代码必然模式基本类似,最终所展现出来的搜索结果是以上下文结构的方式展现的。比如:类与类之间的联系。其实现的具体流程如下:。

(1)软件的开发人员建立同时具备例程和上下文架构的代码库;。

(2)软件的研发人员能够向代码库带给类的相关信息,然后对反馈的结果进行评估,建立新型的代码库。

(3)未来的研发人员在搜集过程中能够按照评估结果的高低排序,便于查询,极大地缩减工作人员的任务量,提升其工作效率。

2.3对动态规则的重用。

软件工程领域内对动态规则重用的研究已经相对成熟,透过在编译器内安装特定插件的方式检验代码是否为动态规则最适用的,并能够将不适合的规则反馈给软件的研发人员。其操作流程为:。

(1)软件的研发人员能够规定动态规则的顺序,主要表此刻:使用某一函数是不能够调用其他的函数。

(2)实现对相关数据的保存,能够透过队列等简单的数据结构完成。在利用编译拓展中检测其中的顺序。

(3)能够将错误的信息反馈给软件的研发人员。

3结束语。

在软件工程的数据挖掘过程中,数据挖掘的概念才逐步被定义,但是所需要挖掘的数据是已经存在的。数据挖掘技术在软件工程中的运用能够降低研发人员的工作量,同时软件工程与数据挖掘的结合是计算机技术必然的发展方向。从数据挖掘的过程来讲,在其整个实施过程和周期中都包括软件工程。而对数据挖掘的技术手段来讲,它在软件工程中的运用更加普遍。在对数据挖掘技术的研究过程中能够发现,该技术虽然已经获得必须的效果,但是还有更多未被挖掘的空间,还需要进一步的研究和发现。

参考文献。

[1]王艺蓉.试析面向软件工程数据挖掘的开发测试技术[j].电子技术与软件工程,(18):64.

[4]刘桂林.分析软件工程中数据挖掘技术的应用方式[j].中国新通信,2017,19(13):119.

数据挖掘论文篇十五

科研是科学研究的简称,具体是指为认识客观事物在内在本质及其运动规律,而借助某些技术手段和设备,开展调查研究、实验等活动,并为发明和创造新产品提供理论依据。科研管理是对科研项目全过程的管理,如课题管理、经费管理、成果管理等等。由于科学研究中涉及的内容较多,从而给科研管理工作增添了一定的难度。为进一步提升科研管理水平,可在不同的管理环节中,对数据挖掘技术进行应用。下面就此展开详细论述。

2.1在立项及可行性评估中的应用。

科研管理工作的开展需要以相关的科研课题作为依托,当课题选定之后,需要对其可行性及合理性进行全面系统地评估,由此使得科研课题的立项及评估成为科研管理的主要工作内容。现阶段,国内的科研课题立项采用的是申请审批制,具体的流程是:由科研机构的相关人员负责提出申请,然后再由科技主管部门从申请中进行筛选,经过业内专家的评审论证之后,择优选取科研项目的承接单位。在进行科研课题立项的过程中,涉及诸多方面的内容,具体包括申请单位、课题的研究领域、经费安排、主管单位以及评审专家等。通过调查发现,由于国家宏观调控政策的缺失,导致科研立项中存在低水平、重复性研究的情况,从而造成大量的研究经费浪费,所取得的研究成果也不显著。科研管理部门虽然建立了相对完善的数据库系统,并且系统也涵盖与项目申请、审评等方面有关的基本操作流程,如上传项目申报文件、将文件发给相关的评审专家、对评审结果进行自动统计等。从本质的角度上讲,数据库管理系统所完成的.这些工作流程,就是将传统管理工作转变为信息化。故此,应当对已有的数据进行深入挖掘,从而找出其中更具利用价值的信息,据此对科研立项进行指导,这样不但能够使有限的科技资源得到最大限度地利用,而且还能使科研经费的使用效益获得全面提升。在科研立项阶段,可对数据挖掘技术进行合理运用,借此来对课题申请中涉及的各种因素进行挖掘,找出其中潜在的规则,为指标体系的构建和遴选方法的选择提供可靠依据,最大限度地降低不合理因素对课题立项带来的影响,对确需资助的科研项目进行准确选择,并给予相应的资助。在科研立项环节中,对数据挖掘技术进行应用时,可以借助改进后的apriori算法进行数据挖掘,从中找出关联规则,在对该规则进行分析的基础上,对立项的合理性进行评价。

项目管理是科研管理的关键环节,为提高项目管理的效率和水平,可对数据挖掘技术进行合理运用。在信息时代到来的今天,计算机技术、网络技术的普及程度越来越高,国内很多科研机构都纷纷构建起了相关的管理信息系统,其中涵盖了诸多的信息,如课题、科研人员、研究条件等等,而在这些信息当中,隐藏着诸多具有特定意义的规则,为找出这些规则,需要借助数据挖掘技术,对信息进行深入分析,进而获取对科研项目有帮助的信息。由于大部分科研管理部门建立的科研管理信息系统时间较早,从而使得系统本身的功能比较单一,如信息删减、修改、查询、统计等等,虽然这些功能可以满足对科研课题进展、经费使用等方面的管理,但其面向的均为数据库管理人员,处理的也都是常规事务。而从科研课题的管理者与决策者的角度上看,管理信息系统这些功能显然是有所不足的,因为他们需要对历史进行分析和提炼,从中获取相应的数据,为决策和管理工作的开展提供支撑。对此,可应用数据挖掘技术的olap,即数据库联机分析处理,由此能够帮助管理者从不同的方面对数据进行观察,进而深入了解数据并获取所需的信息。利用olap可以发现多种于科研课题有关信息之间的内在联系,这样管理者便能及时发现其中存在的相关问题,并针对问题采取有效的方法和措施加以应对。运用数据挖掘技术能够对科研项目的相关数据进行分析,找出其中存在的矛盾,从而使管理工作的开展更具针对性。

3结论。

综上所述,科研管理是一项较为复杂且系统的工作,其中涵盖的信息相对较多。为此,可将数据挖掘技术在科研管理中进行合理应用,对相关信息进行深入分析,从中挖掘出有利用价值的信息,为科研管理工作的开展提供可靠的依据,由此除了能够确保科研项目顺利进行之外,还能提高科研管理水平。

参考文献:。

[3]丁磊.数据挖掘技术在高校教师科研管理中的应用研究[d].大连海事大学,.。

数据挖掘论文篇十六

网络舆情是在各种事件的刺激下,网民通过互联网来表达和传播的各种不同情感、认知、态度和行为交错的总和[7]。随着互联网技术的飞速发展,网民的公共空间得到了极大的拓展,网络平台为网民提供发表意见和参与议事的捷径。

网络舆情危机是指社会事件发生出现在网络上,在短时间内产生大量信息,网民的个人意见在众多观点的碰撞下,最终形成占据主导性的意见,同时就可能使得事件变得更为敏感、甚至尖锐。

网络舆情危机的管理需职能部门建立敏捷的反应机制和推出较为妥善的解决策略。而在计算机技术呈现蓬勃发展的时代背景下,相关部门对网络舆情的积极应对就需要借助信息化管理。本次研究即对数据挖掘技术在网络舆情危机管理中的应用展开如下的分析与阐述。

(1)对网络舆情危机应对数据进行分析。在整个网络舆情应对事例系统中,基础性的关键部分就是舆情危机应对数据。因而,就可以使用数据挖掘技术,对舆情应对数据中危机的发生频率和种类的'规律进行统计和分析,从这些网络舆情危机的种类中提取得到危机发生频率最高的事件,在此基础上,就可根据这些统计结果与数据申报专项研究课题,进而同步增加该方面研究投入。

(2)对整体危机管理水平进行评价。在网络舆情危机管理系统中,可以利用数据挖掘技术对整体的危机管理水平实现综合性的预估和评价。总地说来,数据挖掘技术可以对已有的网络舆情危机应对处理信息进行分析和筛选,进而对该类危机处理质量、服务质量、网络舆情危机系统的使用情况等形成全局性的认知和了解,如此将不仅有利于改善现实危机应对水平,也有助于对未来的非常规突发情况在第一时间调动应急部署,做出合理规划。

(3)对管理效果进行分析。在网络舆情危机管理中,应该对常见的同类网络舆情危机的管理效果进行分析。以在网络舆情危机中职能部门直接或间接地参与到事件数据为依据,通过应用数据挖掘技术可以对危机处理过的具体情况、应对危机时采用的方法、危机处理后的结果引入过滤、分析等优化集成环节,从而制定出针对该类网络舆情突发事件的处理方案,为未来危机发生时的迅捷应对增加了可供参照的应用范例。

研究可知,职能部门可以通过应用数据挖掘技术,对影响其应对舆情危机数量的相关因素进行分析和归类提取描述,有助于该部门及时对现有工作人员按需实施及时变动与合理调整。

职能部门关于应对的工作量指标与该部门应对危机的工作质量有着直接的关系,而其关注和参与的危机数量则能直接体现该部门工作量的执行情况。在对这些数据进行统计和分析时,部门工作人员还应注意灵活运用数据挖掘技术辨识各类舆情危机数量的增减态势,从而为政府未来危机的爆发预测积累第一手的丰富素材与依据。

2.3对网络舆情进行分组聚类方面的应用。

在应对网络舆情危机系统数据的挖掘中,比较常见的就是聚类分析技术。在实际的工作中,根据职能部门的特点和工作要求,将各类网络舆情危机数据信息建立起不同的特征独具的模型仓库,对舆情危机事件信息进行深度挖掘。在此过程中,可以将舆情危机信息作为基础,以舆情危机事件的爆发时间作为标识,使用数据挖掘技术在各类网络舆情事件全程涌现的描述性信息、关键词汇等因子中找出不同舆情危机时间之间的联系,再依据这些联系节点就能得出不同分组事件的舆情信息和处理结果。至此,可以把这些规律和舆情事件进行有机紧密结合,再对舆情危机的运用方法施以适当调整,即可达到良好的危机应对效果。

2.4在提供个性化服务中的应用。

在所有的服务行业中,个性化服务是最高的标准,同时也是公共服务发展的终极目标[8]。网络舆情的爆发往往是信息的不对称导致的事态走向趋于严峻。职能部门对网络舆情危机的应对处理需要在专门的系统平台上向网民做出透明化公示。网民希望在最短时间里找到对自己有价值的信息,由部门定制的个性化服务即能从根本上解决这一问题。个性化服务的核心是培养网民的个人习惯,利用科学的方式引导网民的使用习惯朝着科学方向转变,在大数据技术下就能达到这一预设性目标。

数据挖据技术在设计衍生个性化服务时主要体现在2个方面,研究要点可阐析如下。

(1)数据挖掘技术可以满足职能部门工作人员和网民的实际需求,助其及时找到对自己有价值的信息。

(2)职能部门可以根据舆情危机事件和网民的实际情况,运用大数据技术提供具有针对性、多样性的信息和服务。

实际上,前者主要强调的是部门工作人员和网民需发挥主观能动性,而后者则着重强调了智慧政府的建设。在一定程度上,智慧政府即是未来社会的潮流发展趋势。

3结束语。

随着信息化技术的快速发展,数据挖掘技术的应用领域日趋广泛。数据挖掘技术在职能部门舆情危机应对的信息化和决策支持中具有重要作用。通过运用数据挖掘技术可以最大限度地发挥数字化优势,对舆情危机的数据信息进行深入的挖掘和分析,进而提高社会整体的网络舆情危机应对能力。

参考文献。

[2]vosoughis,royd,aralspreadoftrueandfalsenewsonline[j].socialscience,,359(6380):1146-1151.

数据挖掘论文篇十七

数据挖掘技术在企业客户行为分析中起着关键的作用,企业可用数据挖掘技术对已有的客户数据进行一系列分析,找出其中蕴涵的知识,以采取有效的措施和策略。

(1)企业客户进行细分。企业的资源是有限的,根据市场的状况划分客户的消费行为,采取有效的营销策略细分客户,然后让企业认识客户,针对不同的客户群提供个性化服务。根据地理环境和产品利润,对企业的客户进行划分,选择适当的挖掘技术在客户群体的分类标准情况下,可以挖掘出聚类的技术,划分客户群,这种采用分析聚类方法得到的结果,能够对每个客户群进行未来状况的预测,同时,可采用挖掘的概念描述,在高的抽象层次上对每个客户群进行理解和不同的客户群间进行比较。根据客户的要求进行个性化服务,双方在产品的利润以及品牌的使用率和购买品牌的.忠诚度上,进行细致划分,根据企业的营销战略对企业的客户进行适当挖掘,如果对客户群体的分类能够聚类,并可根据标准进行划分,则挖掘的分类和客户群的未来状况、给企业带来的利润率将被精确地预测。每个客户的概念描述将被具体地挖掘出来,每个客户群都能在高的层次上进行比较,如图2所示。

(2)客户的盈利能力与企业的利润相关。当知道了客户的盈利能力后,企业才能采取有效的营销策略,根据历史数据进行技术的挖掘,如果某个客户的盈利能力能够达到度量标准,就可以成为企业的黄金客户,企业可以向这些客户提供特殊的服务和经营的策略,将其的满意度和忠诚度不断提高,保证企业的盈利。同时可采取分类挖掘的技术,将客户分成不同的客户群,然后对他们的相近特征进行考虑,采用交叉营销的方式,对这些客户发送电子邮件,推荐有兴趣的产品或者服务。针对结果进行营销策略的制定,提高客户可盈利的水平。

(3)对客户进行获取和保持。要对现有客户的生命周期进行核算,随着业务扩大,时间的流逝,客户需要不断补充,企业的发展需要新客户的加盟。对于新客户,企业可以通过不同的营销手段,获取每个客户对营销手段的不同反应,通过多样化的交流渠道,获得更多的信息。营销的渠道有很多,有邮件、电话、网站等,反馈的数据量不断扩大,营销者难以把握,要充分利用数据分析的方法,将客户的概念从整体上加以描述和概括。运用数据发掘的办法,将客户的兴趣进行关联,得到盈利判断标准,为对客户的盈利能力进行预测、分类和处理、得到有价值的知识,发掘出有效的营销方法。商品的增多使客户和企业的接触渠道多样化,客户的流失是由于客户的选择性在增多。进行与客户流失的关联分析,能够将流失的客户数据进行重建,做好现有客户不再被流失的防范措施。例如通过对客户群进行细分,提供个性化服务,实行一对一营销,提高客户的满意度。一个服务提供商要运用数据挖掘技术将客户保留。企业要根据人力资源专家给出的相关因素选择适当的数据源,运用决策树的方法进行分类,可根据是否有流失倾向进行划分,然后运用季节取向模型对客户的业务规律进行建模,得到历史数据,运用偏差检测方法对影响性较高的数据进行检测,经过检测阈值进行预警,对每个客户的兴趣度进行选择和处理,做好防范措施,在有业务联系的客户群里,引发“链条效应”,采用多层关联规则的挖掘方法将客户的相关性进行挖掘。分析不同的概念层,预防链条效应的发生,避免企业客户群的流失。

(4)实际应用中,对数据模型运用神经网路的方法,对合法交易的记录和欺诈记录的集合进行计算,以选择相应的规则,对有欺诈行为的客户进行判断,提高信用度。企业营销的重点将随着市场的变化而变化,数据挖掘发挥的作用是相互利用而不是分开的。在细分客户群时如果发现了特殊的客户,企业需要对这些特殊客户进行发掘,进行盈利能力分析,然后根据盈利和成本的差额进行选择,将潜在客户的数据加以挖掘和应用,针对具体问题进行具体分析,并加以灵活运用。

3结语。

随着全球化企业营销管理竞争的加剧,数据挖掘技术在挖掘语言的形式化和标准化、挖掘过程的可视化、网络环境的数据挖掘、非结构化数据挖掘、知识的维护更新等方面不断取得新进展,对企业信息化建设具有推进作用。当今越来越多的企业建立属于自己的数据仓库,数据挖掘技术将会取得广泛和深入的应用,届时,谁运用数据挖掘技术掌握了客户资源,谁将更具竞争力。

参考文献。

[1]朱慧云,陈森发,张丽杰.动态环境下多个时期的客户购物模式变化挖掘[j].东南大学学报:自然科学版,(5).

[2]郭崇慧,赵作为.基于客户行为的4s店客户细分及其变化挖掘[j].管理工程学报,(4).

[4]胡娟.基于数据挖掘的客户智能分析和研究[j].电脑知识与技术,2013(35).

数据挖掘论文篇十八

近几年,中国经济建设的快速发展也带动了水利这些基础建设的发展,水利工程的增多正在逐渐改善我国的水利体系,如防洪、排水、灌溉、发电、养殖、旅游等,同时也反过来促进国民经济更加稳健发展。此外,为了能加快水利工程建设的发展,需要在水利工程管理上做出新的调整,以给水利工程注入新鲜血液,使水利工程起到更巨大的作用。因此,本文通过阐述数据挖掘技术的一些实施要点,探讨了数据挖掘技术在水利工程中的可行性和应用情况。

从另一个角度看,数据挖掘是资料收集、信息化采矿等。在水利工程项目管理过程中,数据挖掘技术的应用对水利工程项目的管理起着重要的推动作用。同时,数据挖掘是从数据库中发掘信息的过程(数据库知识发现)。数据挖掘的主要应用于大量的数据的采集整理,通过搜索算法来隐藏信息的过程。同样,在当今的信息时代,数据挖掘与计算机和先进的科学技术密切相关,通过计算机、互联网搜索、统计、分析、和其他方面的发展,可服务于许多行业和许多项目,本文借助于某市的水利工程,详细的阐述了其在现场数据管理中的应用情况。

数据挖掘是以现有的海量数据为重要资源,采用数据挖掘引擎技术,通过分析数据库中的数据,提取出最有价值的信息。

2.1相关性分析。

通过数据源之间的相关性,找到所需的目标数据和扩展的信息,通过数据之间的联系找到规律,以便更好地分析数据的使用情况。

2.2数据的分类与整合。

为了达到对更多的数据进行分类和整合的目的,对于没有规律和类型的标记数据按照相关的分类规则,以同一规则将信息汇总在一起,方便查找和应用数据,提高工作效率。

2.3坚持预测分析。

在数据源中坚持预测分析,通过对重要数据进行建模,对信息进行综合有效的分析和预测,从而得出数据的发展趋势。让数据本身通过数据挖掘技术得出必要的结论。

2.4把握概念。

通过了解数据源中所需信息的含义,总结主要特点,并给出概念描述,使数据具有高度的清晰度。

2.5把握据偏差。

数据在输入和输出时不可避免地会出现差错,通过数据挖掘技术检测数据准确性是必要的,要找出参考值与结果之间是否存在差异,寻找一些潜在的信息,以减少数据误差。

3.1部门专家观点之间存在差异。

在水利工程管理中使用了大量的数据,特别是采煤工艺在处理大空间问题上,加之水利部门普遍较大,且越来越多,需要与各部门协调配合工作。但不同的部门通常只负责沟通、交流的时间少,再加上数据分析技术落后于实践,各部门使用的仪器不一样,在数据点的分析上各专家持不同意见,这将阻碍数据处理,从而影响部门之间的合作,数据非常容易干扰,从而影响整个项目进展情况。

3.2与gis系统联系不密切。

gis在水利工程信息系统中占有很大的比重,是水利工程信息系统中不可缺少的一部分,它的主要功能是产生大量的空间数据,空间数据的.计算、查询和分析,以及空间数据可视化是非常复杂的,单纯的依靠手工和一般信息系统是无法解决的,所以我们应该充分利用gis系统。然而,在现实中,由于在这方面缺乏专业人才,充分利用原有的数据和gis系统以进行有效结合,两者一起处理复杂的空间数据,现在还有很多事情要解决。

3.3数据挖掘模型建立不够完善。

我国的水利工程虽然已经开展多年,但水利工程信息系统的应用还处于起步阶段。如今,数据挖掘技术模型可以帮助水利工程数据挖掘的人员可以预见在工程设计和施工过程中存在的差距等问题,确保水利工程项目按照原先设定好的方向进展。

4实例分析。

4.1概况。

某水电站于1963开始建设,于1975年完工,其位于黄河中游的陕西境内,装机容量122万5000kw,是新中国成立以来为数不多的达到百万千瓦的大型水利水电项目。大坝主体结构为混凝土结构,大坝高度为147m,其电站总存储容量为57亿8000万m3。其水利项目主要管理内容包括水库管理、水闸管理、堤防管理、引水工程管理、水利工程管理等。

数据模型主要功能包括水利工程防洪、除涝、灌溉、运输、发电、水产养殖等,电站周边区域的社会经济和农业发展受其影响尤为巨大。在过去的发展过程中,某市的水利工程在管理和决策中,这些都是比较复杂的非结构化决策。因此,构建一个探索性或查询驱动的数据挖掘模型会给水电站的工作人员和专家在数据检索和专业分析的工作上提供方便,使管理者在管理工作上更加的科学合理。

库和数据仓库olap和olam层(数据挖掘的核心内容),用户界面层。用户界面层主要功能是管理员或用户进行人际对话、挖掘数据查询、挖掘结果显示以及数据结果输出。

该水利工程项目管理的内容主要包括:管理水库,水闸管理、堤防管理、南水北调工程管理、项目管理、灌溉等方面。虽然数据挖掘有助于这个过程的开展,水给利工程的管理提供了科学依据,但如果该水利工程管理只是单单的进行数据挖掘,这是不符合数据挖掘系统理论的基本思想。因此,只有在现有的、成熟的国内水利工程项目管理成果的基础上,结合数据挖掘系统,这才是开发水电站管理种数据挖掘系统的最佳方式。

国内许多水利工程在管理和施工过程中,最常用的是gis技术软件。gis软件具有分析处理功能、空间数据查询功能。gis技术软件本身蕴含着多样的数据信息,如当地的一些社会经济、地形地貌、地质、水文环境等。所以,对于水利工程管理数据挖掘系统的未来发展,首先要考虑的应该是如何实现gis系统和数据挖掘理论系统完美衔接。

5总结。

综上所述,数据挖掘技术在水利工程管理中的应用使我们能够分析水利工程的数据更加的全面,这样我们就可以充分挖掘潜在的、有价值的信息,使项目管理更加有效率,使工程的投入资金能被合理的利用,从而提高水电工程质量和工作效率,降低项目管理成本,使水电工程发挥出最大的社会效益和经济效益。虽然在挖掘数据方面还存在很多问题,但我们希望能在今后的水电工程管理中更多的去采用这种技术,为项目管理提供更多的帮助,促进国民经济的发展。

全文阅读已结束,如果需要下载本文请点击

下载此文档
a.付费复制
付费获得该文章复制权限
特价:5.99元 10元
微信扫码支付
已付款请点这里
b.包月复制
付费后30天内不限量复制
特价:9.99元 10元
微信扫码支付
已付款请点这里 联系客服
Baidu
map