心得体会是指一种读书、实践后所写的感受性文字。心得体会对于我们是非常有帮助的,可是应该怎么写心得体会呢?下面小编给大家带来关于学习心得体会范文,希望会对大家的工作与学习有所帮助。
大数据课设的心得体会篇一
随着互联网、物联网、人工智能等技术的不断发展,大数据时代已经来临。大数据可以帮助我们获取并分析海量的数据,从而提高决策的准确性和效率,优化工作流程,改进产品和服务,提升用户体验等。大数据的智能化应用是迈向智能化未来必不可少的一步,因此我们需要不断探索和实践大数据智能化应用的方法和技巧。
要实现大数据的智能化应用,必须建立在良好的基础之上。首先,数据准确性和完整性是保证大数据应用有效性的基础;其次,要构建完善的数据平台和工具,包括数据仓库、分析工具、可视化工具等;还需要建立全面的数据安全保障体系,保护数据的隐私和安全。
大数据智能化的应用领域非常广泛,例如金融、医疗、电商、社交媒体等等。利用大数据技术,可以实现对消费者的行为分析,预测市场趋势,优化产品设计,提高用户满意度。同时,利用大数据还可以预测疾病流行趋势,制定有效的医疗政策,提高医疗效率和服务质量。
以阿里巴巴为例,其淘宝电商平台依赖于大数据技术来收集和分析海量用户数据,从而能够针对用户的喜好、购买行为等进行个性化推荐,提高网站转化率和用户满意度。此外,阿里巴巴还推出了“ETCityBrain”项目,利用大数据技术和人工智能实现城市交通智能化管理,为城市治理和居民出行提供便利。这些具体的案例展示了大数据智能化应用的实际效果和潜力。
第四段:总结大数据智能化应用所带来的好处和面临的挑战。
大数据智能化应用给我们带来了很多好处,例如提高决策效率和准确性、优化业务流程、提升用户体验和满意度。同时,这也带来了另一个问题,就是数据隐私和安全问题。在大数据智能化应用的过程中,我们需要建立完善的数据安全保障机制,保护用户数据的隐私和安全。
此外,大数据智能化应用还需要解决数据质量问题,确保数据的准确性和完整性,避免因为数据误差导致错误决策。另外,大数据智能化应用还需要更人性化的设计,更直观的可视化数据分析工具,来满足用户的需求,增强用户体验。
学习大数据智能化应用需要掌握基础知识和技能,例如数据采集、处理、分析、建模等。同时,还需要了解大数据技术应用于不同行业的案例和经验,并且要不断尝试和实践,从实践中积累经验和心得。
在学习过程中,需要注重团队合作和沟通,与同行一起探讨和共享经验,互相学习和借鉴。同时,还需要积极参与行业会议和研讨会,了解行业最新的发展趋势和技术变革,不断更新自己的知识和技能,保持领先优势。
大数据课设的心得体会篇二
描述小组在完成平台安装时候遇到的问题以及如何解决这些问题的,要求截图加文字描述。
问题一:在决定选择网站绑定时,当时未找到网站绑定的地方。解决办法:之后小组讨论后,最终找到网站绑定的地方,点击后解决了这个问题。
问题二:当时未找到tcp/ip属性这一栏。
解决办法:当时未找到tcp/ip属性这一栏,通过老师的帮助和指导,顺利的点击找到了该属性途径,启用了这一属性,完成了这一步的安装步骤。
问题三:在数据库这一栏中,当时未找到“foodmartsaledw”这个文件。
问题四:在此处的sqlserver的导入和导出向导,这个过程非常的长。
解决办法:在此处的sqlserver的导入和导出向导,这个过程非常的长,当时一直延迟到了下课的时间,小组成员经讨论,怀疑是否是电脑不兼容或其他问题,后来经问老师,老师说此处的加载这样长的时间是正常的,直到下课后,我们将电脑一直开着到寝室直到软件安装完为止。
问题五:问题二:.不知道维度等概念,不知道怎么设置表间关系的数据源。关系方向不对。
解决办法:百度维度概念,设置好维度表和事实表之间的关系,关系有时候是反的——点击反向,最后成功得到设置好表间关系后的数据源视图。(如图所示)。
这个大图当时完全不知道怎么做,后来问的老师,老师边讲边帮我们操作完成的。
问题六:由于发生以下连接问题,无法将项目部署到“localhost”服务器:无法建立连接。请确保该服务器正在运行。若要验证或更新目标服务器的名称,请在解决方案资源管理器中右键单击相应的项目、选择“项目属性”、单击“部署”选项卡,然后输入服务器的名称。”因为我在配置数据源的时候就无法识别“localhost”,所以我就打开数据库属性页面:图1-图2图一:
图二:
解决办法:解决办法:图2步骤1:从图1到图2后,将目标下的“服务器”成自己的sqlserver服务器名称行sqlservermanagementstudio可以)步骤2:点确定后,选择“处理”,就可以成功部署了。
问题七:无法登陆界面如图:
解决方法:尝试了其他用户登陆,就好了。
(1)在几周的学习中,通过老师课堂上耐心细致的讲解,耐心的指导我们如何一步一步的安装软件,以及老师那些简单清晰明了的课件,是我了解了sql的基础知识,学会了如何创建数据库,以及一些基本的数据应用。陌生到熟悉的过程,从中经历了也体会到了很多感受,面临不同的知识组织,我们也遇到不同困难。
理大数据的规模。大数据进修学习内容模板:
linux安装,文件系统,系统性能分析hadoop学习原理。
大数据飞速发展时代,做一个合格的大数据开发工程师,只有不断完善自己,不断提高自己技术水平,这是一门神奇的课程。
2、在学习sql的过程中,让我们明白了原来自己的电脑可以成为一个数据库,也可以做很多意想不到的事。以及在学习的过程中让我的动手能力增强了,也让我更加懂得了原来电脑的世界是如此的博大精深,如此的神秘。通过这次的学习锻炼了我们的动手能力,上网查阅的能力。改善了我只会用电脑上网的尴尬处境,是电脑的用处更大。让我们的小组更加的团结,每个人对自己的分工更加的明确,也锻炼了我们的团结协作,互帮互助的能力。
3、如果再有机会进行平台搭建,会比这一次的安装更加顺手。而在导入数据库和报表等方面也可以避免再犯相同的错误,在安装lls时可以做的更好。相信报表分析也会做的更加简单明了有条理。
总结。
大数据时代是信息化社会发展必然趋势在大学的最后一学期里学习了这门课程是我们受益匪浅。让我们知道了大数据大量的存在于现代社会生活中随着新兴技术的发展与互联网底层技术的革新数据正在呈指数级增长所有数据的产生形式都是数字化。如何收集、管理和分析海量数据对于企业从事的一切商业活动都显得尤为重要。
大数据时代是信息化社会发展必然趋势,我们只有紧紧跟随时代的发展才能在以后的工作生活中中获得更多的知识和经验。
三、
结语。
大数据课设的心得体会篇三
随着信息技术的高速发展,大数据已经成为了当今社会中一项重要的资源和工具。对于企业来说,了解大数据的重要性并将其运用于决策中已经是一项必要的技能。在过去的几年中,我个人也通过学习和实际应用,逐渐认识到了大数据的威力。以下是我对于认识大数据的心得体会。
首先,我认识到大数据具有巨大的潜力。在过去,企业的决策大多基于经验和直觉。然而,这种决策方式存在着很大的风险和不确定性。而通过分析大数据,我们可以获得更准确、更全面的信息,有助于进行更明智的决策。例如,某家电子商务公司通过分析用户的购物行为和偏好,可以更好地了解用户的需求和趋势,从而调整产品和服务,提升用户满意度和销售额。另外,大数据还可以帮助企业发现隐藏的商机和潜在的问题,进一步提升企业的竞争力。
其次,我认识到大数据需要科学的分析方法和工具。大数据的主要特征就是数量庞大和多样性。要从这些数据中挖掘出有价值的信息,并不是一件简单的事情。需要借助科学的分析方法和工具来进行处理和分析。例如,数据挖掘和机器学习等技术可以帮助我们自动发现数据中的模式和规律,从而指导我们的决策。此外,数据可视化也是很重要的一环,通过图表和可视化的方式展示数据的变化和趋势,可以帮助我们更好地理解数据背后的含义和规律。
再次,我认识到大数据需要规范和合规的管理。由于数据的敏感性和价值,需要保证数据的安全和隐私。企业需要合理设置权限和保护机制,确保数据不被非法获取和利用。另外,数据涉及到个人隐私,需要遵循相关法规和规范。企业必须建立完善的数据管理制度和流程,确保数据的规范和合规,同时也提升企业的信誉度和可信度。
此外,我认识到大数据需要与业务紧密结合。大数据本身并没有什么价值,关键是如何将大数据与企业的业务和需求结合起来。大数据分析师不仅要具备数据分析的技能,还要了解企业的业务和市场环境,才能更好地进行数据分析和运用。只有深入了解业务,才能发现更多的商机和挑战,为企业的发展提供更有力的支持。
最后,我认识到大数据需要持续学习和更新。大数据技术和方法在不断发展和更新,我们不能停留在过去的知识和技能上。要不断学习新的技术和方法,保持对大数据的敏锐洞察力,并通过实践来不断提升自己的能力。只有不断学习和更新,才能跟上时代步伐,不被淘汰。
总之,认识大数据需要我们从多个方面进行思考和努力。大数据具有巨大的潜力,但需要科学的分析、规范的管理和业务的结合。同时,我们也要持续学习和更新,保持对大数据的敏感性和洞察力。只有这样,我们才能更好地应对日益复杂的商业环境,为企业的发展提供更好的支持。
大数据课设的心得体会篇四
随着信息时代的快速发展,大数据已经成为当今社会最重要的资源之一。在大数据的浪潮中,我们不仅需要了解相关技术和概念,还需要深入思考大数据对社会、企业以及个人的影响。在我学习和实践大数据知识的过程中,我有一些心得和体会,希望能与大家分享。
第一段:培养数据思维。
学习大数据知识的第一步是培养数据思维。大数据并不只是一堆数字和图表,而是一种思维模式。我们需要学会理解数据的背后含义,通过数据分析和挖掘找到相关问题的解决方案。数据思维使我们能够更深入地了解各个领域,并为未来做出更好的决策。当我们面对问题时,不再凭借主观感觉,而是用数据来支撑我们的判断,这将使我们的决策更加科学和合理。
第二段:大数据驱动决策。
大数据的最大价值在于驱动决策。通过对大数据的分析,我们可以更好地了解市场需求和消费者行为,从而制定更有效的市场策略和销售计划。同时,大数据的应用也在不断拓展,从金融、医疗到教育、政府等各个领域都可以看到大数据的身影。例如,在医疗领域,医生可以通过分析大量的患者数据来判断疾病的发展趋势和治疗方案,提高医疗质量和效率。
第三段:挑战与机遇并存。
然而,大数据也带来了一些挑战。首先是数据隐私和安全问题。随着个人数据的大规模收集和分析,我们的个人隐私将面临更多的风险。因此,保护数据安全和隐私成为了一个重要的课题。其次是大数据技术的不断进步和创新。随着技术的不断更新换代,我们需要不断学习和适应新的工具和方法,才能保持在大数据领域的竞争力。总体而言,大数据给我们带来了巨大的机遇,但同时也需要我们认真应对其中的挑战。
第四段:数据伦理与社会责任。
在大数据时代,我们不仅需要关注技术和业务上的问题,还需要考虑数据伦理和社会责任。数据伦理是指在数据分析和应用中需要遵循的道德规范。例如,我们应该遵循数据隐私保护原则,合法、合规地收集和使用数据,并保证对数据主体的公平和透明。社会责任则是指数据从业者在从事大数据分析和应用时需要承担的社会责任。我们应该确保数据的准确性和安全性,并避免滥用数据对个人或群体造成伤害。只有在遵循数据伦理和社会责任的前提下,大数据的应用才能推动社会进步。
第五段:持续学习和发展。
大数据是一个不断更新和演进的领域,我们需要保持持续学习和发展的态度。不仅可以通过参加相关的培训和学习课程来提升自己的专业知识和技能,还可以通过参与实际工程项目来提高自己的实践能力。只有不断学习和创新,我们才能跟上大数据技术的快速发展,并在这个领域中获得竞争优势。
总结:
大数据知识对于现代社会的发展具有重要的意义。通过培养数据思维、大数据驱动决策、正视挑战与机遇、关注数据伦理和社会责任以及持续学习和发展,我们能更好地应对大数据时代的挑战和机遇,为个人和社会创造更大的价值。大数据时代已经到来,我们只有不断学习和积极应用大数据知识,才能在这个信息爆炸的时代中立于不败之地。
大数据课设的心得体会篇五
大数据时代成为炙手可热的话题。笔者在这说明信息和数据,只是试图首先说明信息、数据的关系和不同,也试图说明,为什么信息时代转变为了大数据时代?大数据时代带给了我们什么?下面是本站小编为大家收集整理的大数据时代。
欢迎大家阅读。
这本书里主要介绍的是大数据在现代商业运作上的应用,以及它对现代商业运作的影响。
《大数据时代》这本书的结构框架遵从了学术性书籍的普遍方式。也既,从现象入手,继而通过对现象的解剖提出对这一现象的解释。然后在通过解释在对未来进行预测,并对未来可能出现的问题提出自己看法与对策。
下面来重点介绍《大数据时代》这本书的主要内容。
《大数据时代》开篇就讲了google通过人们在搜索引擎上搜索关键字留下的数据提前成功的预测了20xx年美国的h1n1的爆发地与传播方向以及可能的潜在患者的事情。google的预测比政府提前将近一个月,相比之下政府只能够在流感爆发一两个周之后才可以弄到相关的数据。同时google的预测与政府数据的相关性高达97%,这也就意味着google预测数据的置信区间为3%,这个数字远远小于传统统计学上的常规置信区间5%!而这个数字就是大数据时代预测结果的相对准确性与事件的可预测性的最好证明!通过这一事以及其他的案例,维克托提出了在大数据时代“样本=总体”的思想。我们都知道当样本无限趋近于总体的时候,通过计算得到的描述性数据将无限的趋近于事件本身的性质。而之前采取的“样本总体”的做法很大程度上无法做到更进一步的描述事物,因为之前的时代数据的获取与存储处理本身有很大的难度只导致人们采取抽样的方式来测量事物。而互联网终端与计算机的出现使数据的获取、存储与处理难度大大降低,因而相对准确性更高的“样本=总体”的测算方式将成为大数据时代的主流,同时大数据时代本身也是建立在大批量数据的存储与处理的基础之上的。
接下来,维克多又通过了ibm追求高精确性的电脑翻译计划的失败与google只是将所有出现过的相应的文字语句扫描并储存在词库中,所以无论需要翻译什么,只要有联系google词库就会出现翻译,虽然有的时候的翻译很无厘头,但是大多数时候还是正确的,所以google的电脑翻译的计划的成功,表明大数据时代对准确性的追求并不是特别明显,但是相反大数据时代是建立在大数据的基础住上的,所以大数据时代追求的是全方位覆盖的数字测度而不管其准确性到底有多高,因为大量的数据会湮埋少数有问题的数据所带来的影响。同时大量的数据也会无限的逼近事物的原貌。
之后,维克托又预测了一个在大数据时代催生的重要职业——数据科学家,这是一群数学家、统计学与编程家的综合体,这一群人将能够从获取的数据中得到任何他们想要的结果。换言之,只要数据充足我们的一切外在的与内在的我们不想让他人知道的东西都见会在这一群家伙的面前展现得淋漓尽致。所以为了避免个人隐私在大数据时代被这一群人利用,维克托建议将这一群人分为两部分,一部分使用数据为商业部门服务,而另一群人则负责审查这一些人是否合法的获得与应用数据,是否侵犯了个人隐私。
无论如何,大数据时代将会到来,不管我们接受还是不接受!
我觉得《大数据时代》这本书写的很好,很值得一读。因为会给我们很多启发,比如你在相关的社交网站发表的言论或者照片都很有可能被“数据科学家”们利用,从而再将相关数据卖给各大网店。不过,事实就是我们将会成为被预测被引诱的对象。所以说,小心你在网上留下的痕迹。
我喜欢这本书是因为它给我展现了一个新的世界。
读了《大数据时代》后,感觉到一个大变革的时代将要来临。虽然还不怎么明了到底要彻底改变哪些思维和操作方式,但显然作者想要“终结”或颠覆一些传统上作为我们思维和生存基本理论、方法和方式。在这样的想法面前,我的思想被强烈震撼,不禁战栗起来。
“在小数据时代,我们会假象世界是怎样运作的,然后通过收集和分析数据来验证这种假想。”“随着由假想时代到数据时代的过渡,我们也很可能认为我们不在需要理论了。”书中几乎肯定要颠覆统计学的理论和方法,也试图通过引用《连线》杂志主编安德森的话“量子物理学的理论已经脱离实际”来“终结”量子力学。对此我很高兴,因为统计学和量子力学都是我在大学学习时学到抽筋都不能及格的课目。但这两个理论实在太大,太权威,太基本了,我想我不可能靠一本书就能摆脱这两个让我头疼一辈子的东西。作者其实也不敢旗帜鲜明地提出要颠覆它们的论点,毕竟还是在前面加上了“很可能认为”这样的保护伞。
近几十年,我们总是在遇到各种各样的新思维。在新思维面前我们首先应该做到的就是要破和立,要改变自己的传统,跟上时代的脚步。即使脑子还跟不上,嘴巴上也必须跟上,否则可能会被扣上思想僵化甚至阻碍世界发展的大帽子。既然大数据是“通往未来的必然改变”,那我就必须“不受限于传统的思维模式和特定领域里隐含的固有偏见”,跟作者一起先把统计学和量子力学否定掉再说。反正我也不喜欢、也学不会它们。
当我们人类的数据收集和处理能力达到拍字节甚至更大之后,我们可以把样本变成全部,再加上有能力正视混杂性而忽视精确性后,似乎真的可以抛弃以抽样调查为基础的统计学了。但是由统计学和量子力学以及其他很多“我们也很可能认为我们不再需要的”理论上溯,它们几乎都基于一个共同的基础——逻辑。要是不小心把逻辑或者逻辑思维或者逻辑推理一起给“不再需要”的话,就让我很担心了!
《大数据时代》第16页“大数据的核心就是预测”。逻辑是——描述时空信息“类”与“类”之间长时间有效不变的先后变化关系规则。两者似乎是做同一件事。可大数据要的“不是因果关系,而是相关关系”,“知道是什么就够了,没必要知道为什么”,而逻辑学四大基本定律(同一律、矛盾律、排中律和充足理由律)中的充足理由律又“明确规定”任何事物都有其存在的充足理由。且逻辑推理三部分——归纳逻辑、溯因逻辑和演绎逻辑都是基于因果关系。两者好像又是对立的。在同一件事上两种方法对立,应该只有一个结果,就是要否定掉其中之一。这就是让我很担心的原因。
可我却不能拭目以待,像旁观者一样等着哪一个“脱颖而出”,因为我身处其中。问题不解决,我就没法思考和工作,自然就没法活了!更何况还有两个更可怕的事情。
其一:量子力学搞了一百多年,为了处理好混杂性问题,把质量和速度结合到能量上去了,为了调和量子力学与相对论的矛盾,又搞出一个量子场论,再七搞八搞又有了虫洞和罗森桥,最后把四维的时空弯曲成允许时间旅行的样子,恨不得马上造成那可怕的时间旅行机器。唯一阻止那些“爱因斯坦”们“瞎胡闹”的就是因果关系,因为爸爸就是爸爸,儿子就是儿子。那么大数据会不会通过正视混杂性,放弃因果关系最后反而搞出时间机器,让爸爸不再是爸爸,儿子不再是儿子了呢?其二:人和机器的根本区别在于人有逻辑思维而机器没有。《大数据时代》也担心“最后做出决策的将是机器而不是人”。如果真的那一天因为放弃逻辑思维而出现科幻电影上描述的机器主宰世界消灭人类的结果,那我还不如现在就趁早跳楼。
还好我知道自己对什么统计学、量子力学、逻辑学和大数据来说都是门外汉,也许上面一大篇都是在胡说八道,所谓的担心根本不存在。但问题出现了,还是解决的好,不然没法睡着觉。自己解决不了就只能依靠专家来指点迷津。
所以想向《大数据时代》的作者提一个合理化建议:把这本书继续写下去,至少加一个第四部分——大数据时代的逻辑思维。
在《大数据时代》一书中,大数据时代与小数据时代的区别:1、思维惯例。大数据时代区别与转变就是,放弃对因果关系的渴求,而取而代之关注相关关系。也就是说只要知道“是什么”,而不需要知道“为什么”。作者语言绝对,却反思其本质区别。数据的更多、更杂,导致应用主意只能尽量观察,而不是倾其所有进行推理?这也是明智之举2、使用用途。小数据停留在说明过去,大数据用驱动过去来预测未来。笔者认为数据的用途意在何为,与数据本身无关,而与数据的解读者有关,而相关关系更有利于预测未来。3、结构。大数据更多的体现在海量非结构化数据本身与处理方法的整合。大数据更像是理论与现实齐头并进,理论来创立处理非结构化数据的方法,处理结果与未来进行验证。4、分析基础。大数据是在互联网背景下数据从量变到质变的过程。笔者认为,小数据时代也即是信息时代,是大数据时代的前提,大数据时代是升华和进化,本质是相辅相成,而并非相离互斥。
数据未来的故事。数据的发展,给我们带来什么预期和启示?银行业天然有大数据的潜质。客户数据、交易数据、管理数据等海量数据不断增长,海量机遇和挑战也随之而来,适应变革,适者生存。我们可以有更广阔的业务发展空间、可以有更精准的决策判断能力、可以有更优秀的经营管理能力„„可以这些都基于数据的收集、整理、驾驭、分析能力,基于脱颖而出的创新思维和执行。因此,建设“数据仓库”,培养“数据思维”,养成“数据治理”,创造“数据融合”,实现“数据应用”才能拥抱“大数据”时代,从数据中攫取价值,笑看风云变换,稳健赢取未来。
大数据课设的心得体会篇六
随着时代的发展和科技的进步,大数据智能成为了各个行业的重要标志。大数据智能的出现让人类对所处于的世界有着更加深刻的认识和洞察,也让各个领域的工作更加智能化、高效化、精准化。在这样一个发展的时代,我们每个人都应该学习并掌握大数据智能的知识,以便更好地适应这个时代。分享我的一些大数据智能心得体会,希望对大家有所启发。
一、关注数据质量。
大数据智能的基础是数据,而数据的质量直接影响到分析和决策的准确性。因此,在大数据分析的过程中,一定要注意关注数据的质量。除了数据来源的可靠性外,还要注意数据的完整性、准确性和时效性,并执行数据清洗和整理等工作,以确保分析模型可以准确预测,避免“垃圾进,垃圾出”的结果。
二、合理使用算法。
在应用大数据智能的过程中,人工智能算法扮演着至关重要的角色。不同的问题需要不同的算法来进行分析和处理。因此,在实际工作中,我们需要了解各种算法的特点和优缺点,选择最适合解决问题的算法并合理运用。
三、挖掘数据背后的意义。
数据分析的目的是帮助我们发现数据背后的信息,了解数据描述的现象或模式,并帮助我们做出符合真实情况的决策。这也是大数据智能的意义所在。因此,在进行数据分析时,我们不仅要关注数据本身,更要尝试理解数据的背后含义并探索其规律性。这样才能更好的指导我们的企业管理和决策。
四、重视数据安全。
在使用大数据智能技术时,数据安全时常被忽略。大数据分析涉及大量敏感数据,需要我们更加重视数据安全。数据安全包括数据存储、传输和使用等方面。因此,建立企业的数据安全体系,保障企业和客户数据的安全和隐私是必要的。
五、不断学习和创新。
大数据智能涉及到诸多领域和技能,对人才的需求也显得非常高。同时,大数据的新技术和行业分析的新方法也层出不穷。因此,我们需要保持学习和创新的心态,了解并掌握前沿的科技和行业趋势,及时掌握新技术和方法,以便更好地服务于企业和社会。
总之,在这个充满机遇和挑战的时代,大数据智能已经成为一个越来越重要的方向。当我们学习和熟练掌握大数据智能技术和方法的时候,我们可以更好地理解这个世界,更好地应对和解决各种问题,走得更远更稳。让我们一起学习和分享大数据智能的心得体会,为科技和社会的发展尽一份力量!
大数据课设的心得体会篇七
近年来,“大数据”这个概念突然火爆起来,成为业界人士舌尖上滚烫的话题。所谓“大数据”,是指数据规模巨大,大到难以用我们传统信息处理技术合理撷取、管理、处理、整理。“大数据”概念是“信息”概念的3.0版,主要是对新媒体语境下信息爆炸情境的生动描述。
我们一直有这样的成见:信息是个好东西。对于人类社会而言,信息应该多多益善。这种想法是信息稀缺时代的产物。由于我们曾吃尽信息贫困和蒙昧的苦头,于是就拼命追逐信息、占有信息。我们甚至还固执地认为,占有的信息越多,就越好,越有力量。但是,在“大数据’时代,信息不再稀缺,这种成见就会受到冲击。信息的失速繁衍造成信息的严重过剩。当超载的信息逼近人们所能承受的极限值时,就会成为一种负担,我们会不堪重负。
信息的超速繁殖源自于信息技术的升级换代。以互联网为代表的新媒体技术打开了信息所罗门的瓶子,数字化的信息失速狂奔,使人类主宰信息的能力远远落在后面。美国互联网数据中心指出,互联网上的数据每两年翻一番,目前世界上的90%以上数据是近几年才产生的。,数字存储信息占全球数据量的四分之一,另外四分之三的信息都存储在报纸、胶片、黑胶唱片和盒式磁带这类媒介上。,只有7%是存储在报纸、书籍、图片等媒介上的模拟数据,其余都是数字数据。到,世界上存储的数据中,数字数据超过98%。面对数字数据的大量扩容,我们只能望洋兴叹。
“大数据”时代对人类社会的影响是全方位的。这种影响究竟有多大,我们现在还无法预料。哈佛大学定量社会学研究所主任盖瑞·金则以“一场革命”来形容大数据技术给学术、商业和政府管理等带来的变化,认为“大数据”时代会引爆一场“哥白尼式革命”:它改变的不仅仅是信息生产力,更是信息生产关系;不仅是知识生产和传播的内容,更是其生产与传播方式。
我们此前的知识生产是印刷时代的产物。它是15世纪古登堡时代的延续。印刷革命引爆了人类社会知识生产与传播的“哥白尼式革命”,它使得知识的生产和传播突破了精英、贵族的垄断,开启了知识传播的大众时代,同时,也确立了“机械复制时代”的知识生产与传播方式。与印刷时代相比,互联网新媒体开启的“大数据”时代,则是一场更为深广的革命。在“大数据”时代,信息的生产与传播往往是呈几何级数式增长、病毒式传播。以互联网为代表的媒介技术颠覆了印刷时代的知识生产与传播方式。新媒体遍地开花,打破了传统知识主体对知识生产与传播的垄断。新媒体技术改写了静态、单向、线性的知识生产格局,改变了自上而下的知识传播模式,将知识的生产与传播抛入空前的不确定之中。在“大数据”时代,我们的知识生产若再固守印刷时代的知识生产理念,沿袭此前的知识生产方式,就会被远远地甩在时代后面。
(节选自2013.2.22《文汇读书周报》,有删改)。
大数据课设的心得体会篇八
随着互联网的蓬勃发展,现代社会已经进入了一个信息爆炸的时代。海量的数据通过各种渠道不断产生,这使得人们面临处理和分析数据的新挑战。大数据监督作为一个关键的环节,起着保护数据安全和隐私的重要作用。在过去的几年中,我有幸参与了大数据监督工作,并获得了一些宝贵的经验和体会。
首先,我认为大数据监督的关键是保护数据的隐私和安全。在处理大数据的过程中,我们经常需要处理涉及个人隐私和商业机密的数据。因此,我们必须意识到确保数据不被滥用和泄露的重要性。为此,我们需要建立健全的数据访问控制机制,加密敏感信息,并制定相应的安全政策。只有这样,我们才能确保大数据的合法使用和保护用户的隐私。
其次,大数据监督需要合理运用技术手段和工具。随着大数据技术的不断发展,我们可以利用人工智能、机器学习和数据挖掘等工具来分析和监控大数据。这些技术可以帮助我们发现数据中的异常或错误,并提供有价值的信息。例如,通过使用机器学习算法,我们可以识别未经授权访问的数据,并及时采取措施来阻止恶意行为。因此,合理运用技术手段和工具是提高大数据监督效果的重要一步。
第三,大数据监督需要注意数据的完整性和准确性。在进行大数据分析之前,我们必须确保数据的完整性和准确性。否则,分析结果可能不准确甚至误导决策。为此,我们需要建立数据质量控制的机制,包括数据清洗、数据验证和数据校对等步骤。只有确保了数据的完整性和准确性,我们才能更好地进行大数据分析,并提供有价值的信息。
第四,大数据监督需要遵守法律和伦理规范。在处理大数据的过程中,我们必须严守法律和伦理规范,包括个人隐私保护法和数据保护法等。我们不能将数据滥用于违法活动或盗窃商业机密。此外,我们还应该尊重用户的权益和隐私,不得擅自公开或出售用户的个人信息。只有遵守法律和伦理规范,我们才能建立一个安全可信的大数据监督系统。
最后,大数据监督需要与各方合作共建。大数据监督不是一个人或一个组织可以完成的任务,而是需要各方的共同努力。政府、企业和用户都应承担起自己的责任,共同建立一个有效的大数据监督体系。政府应加强监管力度,制定更加严格的数据保护法;企业应加强自律,强化内部数据安全管理;用户应提高安全意识,避免泄露个人信息。只有通过各方的合作和努力,我们才能建立一个安全、高效的大数据监督系统。
综上所述,大数据监督是保障数据安全和隐私的重要环节。通过保护数据隐私和安全、合理运用技术手段和工具、关注数据的完整性和准确性、遵守法律和伦理规范、与各方合作共建等五个方面的努力,我们可以更好地进行大数据监督工作,并为社会提供有价值的信息服务。在不断发展的信息社会中,我们应该认识到大数据监督的重要性,并积极推动其发展,为数据安全和隐私保护做出自己的贡献。
大数据课设的心得体会篇九
大数据时代已经悄然到来,如何应对大数据时代带来的挑战与机遇,是我们当代大学生特别是我们计算机类专业的大学生的一个必须面对的严峻课题。大数据时代是我们的一个黄金时代,对我们的意义可以说就像是另一个“80年代”。在讲座中秦永彬博士由一个电视剧《大太监》中情节来深入浅出的简单介绍了“大数据”的基本概念,并由“塔吉特”与“犯罪预测”两个案例让我们深切的体会到了“大数据”的对现今这样一个信息时代的不可替代的巨大作用。
在前几年本世纪初的时候,世界都称本世纪为“信息世纪”。确实在计算机技术与互联网技术的飞速发展过后,我们面临了一个每天都可以“信息爆炸”的时代。打开电视,打开电脑,甚至是在街上打开手机、pda、平板电脑等等,你都可以接收到来自互联网从世界各地上传的各类信息:数据、视频、图片、音频……这样各类大量的数据累积之后达到了引起量变的临界值,数据本身有潜在的价值,但价值比较分散;数据高速产生,需高速处理。大数据意味着包括交易和交互数据集在内的所有数据集,其规模或复杂程度超出了常用技术按照合理的成本和时限捕捉、管理及处理这些数据集的能力。遂有了“大数据”技术的应运而生。
现在,当数据的积累量足够大的时候到来时,量变引起了质变。“大数据”通过对海量数据有针对性的分析,赋予了互联网“智商”,这使得互联网的作用,从简单的数据交流和信息传递,上升到基于海量数据的分析,一句话“他开始思考了”。简言之,大数据就是将碎片化的海量数据在一定的时间内完成筛选、分析,并整理成为有用的资讯,帮助用户完成决策。借助大数据企业的决策者可以迅速感知市场需求变化,从而促使他们作出对企业更有利的决策,使得这些企业拥有更强的创新力和竞争力。这是继云计算、物联网之后it产业又一次颠覆性的技术变革,对国家治理模式、对企业的决策、组织和业务流程、对个人生活方式都将产生巨大的影响。后工业社会时代,随着新兴技术的发展与互联网底层技术的革新,数据正在呈指数级增长,所有数据的产生形式,都是数字化。如何收集、管理和分析海量数据对于企业从事的一切商业活动都显得尤为重要。大数据时代是信息化社会发展必然趋势,我们只有紧紧跟随时代发展的潮流,在技术上、制度上、价值观念上做出迅速调整并牢牢跟进,才能在接下来新一轮的竞争中摆脱受制于人的弱势境地,才能把握发展的方向。
首先,“大数据”究竟是什么?它有什么用?这是当下每个人初接触“大数据”都会有的疑问,而这些疑问在秦博士的讲座中我们都了解到了。“大数据”的“大”不仅是单单纯纯指数量上的“大”,而是在诸多方面上阐释了“大”的含义,是体现在数据信息是海量信息,且在动态变化和不断增长之上。同时“大数据”在:速度(velocity)、多样性(variety)、价值密度(value)、体量(volume)这四方面(4v)都有体现。其实“大数据”归根结底还是数据,其是一种泛化的数据描述形式,有别于以往对于数据信息的表达,大数据更多地倾向于表达网络用户信息、新闻信息、银行数据信息、社交媒体上的数据信息、购物网站上的用户数据信息、规模超过tb级的数据信息等。
一、学习总结。
采用某些技术,从技术中获得洞察力,也就是bi或者分析,通过分析和优化实现。
对企业未来运营的预测。
在如此快速的到来的大数据革命时代,我们还有很多知识需要学习,许多思维需要转变,许多技术需要研究。职业规划中,也需充分考虑到大数据对于自身职业的未来发展所带来的机遇和挑战。当我们掌握大量数据,需要考虑有多少数字化的数据,又有哪些可以通过大数据的分析处理而带来有价值的用途?在大数据时代制胜的良药也许是创新的点子,也许可以利用外部的数据,通过多维化、多层面的分析给我们日后创业带来价值。借力,顺势,合作共赢。
百度百科中是这么解释的:大数据(bigdata),指无法在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产。我最开始了解大数据是从《大数据时代》了解到的。
大数据在几年特别火爆,不知道是不是以前没关注的原因,从各种渠道了解了大数据以后,就决定开始学习了。
二、开始学习之旅。
在科多大数据学习这段时间,觉得时间过的很快,讲课的老师,是国家大数据标准制定专家组成员,也是一家企业的大数据架构师,老师上课忒耐心,上课方式也很好,经常给我们讲一些项目中的感受和经验,果然面对面上课效果好!
如果有问题,老师会一直讲到你懂,这点必须赞。上课时间有限,我在休息时间也利用他们的仿真实操系统不断的练习,刚开始确实有些迷糊,觉得很难学,到后来慢慢就入门了,学习起来就容易多了,坚持练习,最重要的就是坚持。
大数据课设的心得体会篇十
随着信息技术的飞速发展,大数据已经成为了当今社会的热门话题之一。作为一种全新的数据分析和处理方式,大数据正深刻地影响着我们的生活和工作。作为数据科学家,我有幸被安排参与了一次关于大数据的研究项目,并通读了大量的资料。在这个过程中,我获得了一些宝贵的心得和体会。
首先,通读大数据资料让我对大数据的概念有了更加清晰的认识。大数据,简单来说,就是指那些规模庞大、来源多样、种类繁多的数据集合。尤其是在当今互联网时代,人们每天都在以惊人的速度产生海量的数据,这些数据对于科学研究、商业分析和政策决策都具有重要的价值。通读资料的过程中,我了解到了大数据的本质和特点,对于后续的数据处理和分析工作有了更加明确的方向。
其次,通读大数据资料也让我深刻地认识到大数据的意义和应用领域。大数据有着广泛的应用场景,从金融、医疗、教育到交通、能源等领域都可以看到大数据的身影。通过分析和挖掘这些数据,我们可以为企业提供更有效的销售策略和市场预测,可以帮助医疗系统实现精准诊疗和疾病预防,可以为城市交通规划提供更合理的方案,可以使能源利用更加高效,以此类推。通读大数据资料的过程中,我对于大数据在各个领域的应用案例有了更加直观和深入的了解,对于以后的实践工作提供了很好的指导。
同时,通读大数据资料使我领悟到大数据分析的重要性。大数据的产生已经远远超过了人类的处理能力,这就需要我们借助计算机和相关工具来对这些数据进行分析。通过使用数据挖掘、机器学习和人工智能等技术,我们可以从大数据中发现隐藏的模式和规律,并为相应的业务和问题提供有效的解决方案。通读大数据资料的过程中,我深刻意识到了数据分析在大数据时代的重要性,为我今后从事数据科学工作打下了坚实的基础。
此外,通读大数据资料给我带来了关于大数据安全和隐私保护问题的思考。在大数据时代,个人和企业的隐私面临着前所未有的挑战。大数据的分析和处理涉及到大量的个人信息和商业数据,如果泄露或滥用,将可能导致严重的社会问题。通读大数据资料的过程中,我了解到了大数据安全和隐私保护的重要性,了解到了一些相关的法律法规和技术手段,为今后的数据工作提供了更加全面的考虑。
综上所述,通过通读大数据资料,我对于大数据有了更加清晰的认识和详细的了解,对于大数据的意义和应用领域也有了更加深入的掌握。同时,我也意识到了大数据分析的重要性和大数据安全与隐私保护问题。通读大数据资料的经历不仅增加了我的专业知识,也让我更加关注大数据的社会影响和发展趋势。未来,我将继续深入研究和实践大数据相关的领域,为推动大数据应用和发展做出自己的贡献。
大数据课设的心得体会篇十一
读了《大数据时代》后,感觉到一个大变革的时代将要来临。虽然还不怎么明了到底要彻底改变哪些思维和操作方式,但显然作者想要“终结”或颠覆一些传统上作为我们思维和生存基本理论、方法和方式。在这样的想法面前,我的思想被强烈震撼,不禁战栗起来。
“在小数据时代,我们会假象世界是怎样运作的,然后通过收集和分析数据来验证这种假想。”“随着由假想时代到数据时代的过渡,我们也很可能认为我们不在需要理论了。”书中几乎肯定要颠覆统计学的理论和方法,也试图通过引用《连线》杂志主编安德森的话“量子物理学的理论已经脱离实际”来“终结”量子力学。对此我很高兴,因为统计学和量子力学都是我在大学学习时学到抽筋都不能及格的课目。但这两个理论实在太大,太权威,太基本了,我想我不可能靠一本书就能摆脱这两个让我头疼一辈子的东西。作者其实也不敢旗帜鲜明地提出要颠覆它们的论点,毕竟还是在前面加上了“很可能认为”这样的保护伞。
近几十年,我们总是在遇到各种各样的新思维。在新思维面前我们首先应该做到的就是要破和立,要改变自己的传统,跟上时代的脚步。即使脑子还跟不上,嘴巴上也必须跟上,否则可能会被扣上思想僵化甚至阻碍世界发展的大帽子。既然大数据是“通往未来的必然改变”,那我就必须“不受限于传统的思维模式和特定领域里隐含的固有偏见”,跟作者一起先把统计学和量子力学否定掉再说。反正我也不喜欢、也学不会它们。
当我们人类的数据收集和处理能力达到拍字节甚至更大之后,我们可以把样本变成全部,再加上有能力正视混杂性而忽视精确性后,似乎真的可以抛弃以抽样调查为基础的统计学了。但是由统计学和量子力学以及其他很多“我们也很可能认为我们不再需要的”理论上溯,它们几乎都基于一个共同的基础——逻辑。要是不小心把逻辑或者逻辑思维或者逻辑推理一起给“不再需要”的话,就让我很担心了!
《大数据时代》第16页“大数据的核心就是预测”。逻辑是——描述时空信息“类”与“类”之间长时间有效不变的先后变化关系规则。两者似乎是做同一件事。可大数据要的“不是因果关系,而是相关关系”,“知道是什么就够了,没必要知道为什么”,而逻辑学四大基本定律(同一律、矛盾律、排中律和充足理由律)中的充足理由律又“明确规定”任何事物都有其存在的充足理由。且逻辑推理三部分——归纳逻辑、溯因逻辑和演绎逻辑都是基于因果关系。两者好像又是对立的。在同一件事上两种方法对立,应该只有一个结果,就是要否定掉其中之一。这就是让我很担心的原因。
可我却不能拭目以待,像旁观者一样等着哪一个“脱颖而出”,因为我身处其中。问题不解决,我就没法思考和工作,自然就没法活了!更何况还有两个更可怕的事情。
其一:量子力学搞了一百多年,为了处理好混杂性问题,把质量和速度结合到能量上去了,为了调和量子力学与相对论的矛盾,又搞出一个量子场论,再七搞八搞又有了虫洞和罗森桥,最后把四维的时空弯曲成允许时间旅行的样子,恨不得马上造成那可怕的时间旅行机器。唯一阻止那些“爱因斯坦”们“瞎胡闹”的就是因果关系,因为爸爸就是爸爸,儿子就是儿子。那么大数据会不会通过正视混杂性,放弃因果关系最后反而搞出时间机器,让爸爸不再是爸爸,儿子不再是儿子了呢?其二:人和机器的根本区别在于人有逻辑思维而机器没有。《大数据时代》也担心“最后做出决策的将是机器而不是人”。如果真的那一天因为放弃逻辑思维而出现科幻电影上描述的机器主宰世界消灭人类的结果,那我还不如现在就趁早跳楼。
还好我知道自己对什么统计学、量子力学、逻辑学和大数据来说都是门外汉,也许上面一大篇都是在胡说八道,所谓的担心根本不存在。但问题出现了,还是解决的好,不然没法睡着觉。自己解决不了就只能依靠专家来指点迷津。
所以想向《大数据时代》的作者提一个合理化建议:把这本书继续写下去,至少加一个第四部分——大数据时代的逻辑思维。
大数据课设的心得体会篇十二
近年来,金融大数据的兴起引发了全球金融业的巨大变革。作为一名金融界的从业者,我深切感受到了金融大数据在业务决策、风险管理等方面的重要性。在实践中,我逐渐总结出了一些关于金融大数据的心得体会。
首先,金融大数据的应用为业务决策提供了全新的视角。在过去,金融业的决策常常基于经验和直觉,而缺乏数据支持的决策往往容易产生风险。然而,金融大数据的引入彻底改变了这种状况。通过对大量的金融数据进行分析,我们可以发现市场的规律和变化趋势,从而制定出更加科学合理的决策方案。例如,通过分析历史市场数据,我们可以找到股票价格之间的相关性,并进一步构建股票组合,从而实现风险的分散和收益的最大化。
其次,金融大数据的应用极大地提升了风险管理的能力。在金融领域,风险控制一直是至关重要的。过去,风险管理主要依赖于人工的经验和直觉,容易受到主观因素的影响。但现在,金融大数据能够帮助我们更加全面、准确地评估风险。通过对大数据的深入分析,我们能够获取更加全面、准确、及时的市场信息,从而为风险管理提供了更加有力的支持。例如,我们可以通过对市场数据的分析,预测可能发生的波动情况,及时提前采取相应的对策,从而降低风险的发生概率。
然而,金融大数据应用也存在一些挑战和风险。首先,金融大数据的处理和分析需要庞大的计算能力和专业的技术支持,这对金融机构提出了更高的要求。其次,金融大数据的应用还涉及到隐私和安全的问题。金融数据往往包含着大量的客户账户信息和交易数据,如果处理不当,可能会导致客户隐私泄露和财务安全的风险。因此,金融机构在使用金融大数据时必须加强数据安全措施,以确保数据的保密性和完整性。
最后,在应用金融大数据的过程中,我们需要保持数据的客观性和准确性。金融数据的处理和分析过程中,可能存在人为的操作和干扰,这可能会导致分析结果出现偏差。因此,金融机构在使用金融大数据时必须加强数据的把控和审查,确保数据的客观性和准确性。同时,也需要建立完善的数据管理系统,确保数据的存储和传输的安全和可靠。
总之,金融大数据的应用为金融业带来了巨大的变革和机遇。通过合理、科学地利用金融大数据,我们可以更好地做出业务决策和管理风险,提升金融机构的竞争力和盈利能力。然而,在应用金融大数据的过程中,我们也需要面对一系列挑战和风险,这需要我们加强技术支持、提升数据安全能力,并严格把控数据的客观性和准确性。只有这样,我们才能更好地利用金融大数据,推动金融业的发展和创新。
大数据课设的心得体会篇十三
随着互联网的发展和普及,网络大数据已经渗透到生活的方方面面。作为一名经常上网的人,我在使用网络的过程中也不断接触到大量的数据信息。通过与大数据的互动和分析,我有了一些心得体会。在这篇文章中,我将分享我对网络大数据的理解和感悟。
首先,网络大数据给我们提供了许多便利和机遇。作为一个喜欢购物的人,我经常使用电商平台购买商品。在这个过程中,网络大数据起到了重要的作用。通过分析我的购物历史和个人偏好,这些平台能够向我提供个性化的推荐,使我更容易找到自己喜欢的商品。另外,在搜索引擎的帮助下,我可以轻松地找到我所需要的信息。网络大数据将海量的信息整理、分类和推送给用户,为我们提供了很多方便和机遇。
其次,网络大数据丰富了我们的娱乐生活。视频网站、音乐平台和社交媒体等网络平台提供了各种各样的娱乐内容,为我们的生活注入了更多的乐趣。通过分析用户的兴趣和喜好,这些平台能够向我们推荐符合我们口味的内容。无论是看电影、听音乐还是玩游戏,网络大数据都让我们能够更好地享受娱乐活动。此外,网络大数据还为我们提供了与他人互动的机会。通过社交媒体,我们可以与朋友分享生活中的点滴,与陌生人交流心得体会。网络大数据丰富了我们的社交圈子,让娱乐变得更有趣。
然而,网络大数据也存在一些问题和挑战。首先,随着个人信息的不断泄露和滥用,隐私保护问题越来越受到关注。在互联网时代,我们的个人信息往往成为了商家和政府的目标。他们通过收集和分析我们的个人数据,用于广告投放、市场调研和社会管理等目的。我们需要更加重视个人信息的保护,加强对网络平台和服务提供者的监管,确保我们的个人信息不被滥用。
其次,网络大数据可能会让我们过度依赖技术和算法。虽然网络大数据能够为我们提供便利和推荐,但是我们也应该保持独立思考和判断的能力。不能完全依赖算法和机器,需要学会分辨信息的真假,培养自己的思考能力和判断力。同时,我们也需要警惕算法的偏见和漏洞。网络大数据虽然强大,但它也有局限性,需要我们保持警觉和批判的态度。
最后,网络大数据给我们带来了不可忽视的经济和社会影响。大数据分析已经成为许多企业和组织的核心竞争力。通过分析大数据,企业能够更好地了解市场需求和用户行为,提供更好的产品和服务。同时,大数据也在推动着社会的变革。例如,在医疗领域,大数据分析可以帮助医生提前发现和预防疾病;在城市规划方面,大数据分析可以优化交通和公共服务的布局。网络大数据的应用已经深入到各行各业,改变着我们的生活和工作方式。
总的来说,网络大数据给我们带来了便利、机遇和娱乐,但也存在着隐私保护、依赖技术和算法等问题。我们应该充分利用网络大数据的优势,同时保持对它的警觉和批判精神。网络大数据是一个充满机遇和挑战的领域,我们应该学会正确地使用和应对,以更好地适应互联网时代的发展。
大数据课设的心得体会篇十四
随着信息化时代的到来,大数据成为了各行各业的热门话题。作为国家基础设施的一环,铁路系统也被引入大数据技术,以提高运输效率、减少风险并改进用户体验。在我参与铁路大数据项目的过程中,我深深感受到了大数据对铁路运输管理的重要性,也汲取到了许多宝贵的经验。下面我将就铁路大数据的应用及心得体会进行归纳。
第一段:大数据的铁路应用。
铁路系统是一个庞大且复杂的系统,信息的处理与管理成为了一个巨大的挑战。而大数据技术的引入,使得铁路系统得以更好地融入信息化时代。比如,通过对车站乘客的出行数据进行分析,铁路部门能够精确预测客流高峰时段,并采取合理的调度措施,提高列车运输能力;通过对列车运行数据的实时监控,铁路系统可以及时发现问题并采取补救措施,保障乘客的安全;通过对运费数据的整理和分析,铁路系统能够优化价格策略,实现运输成本的最小化。正是这些大数据的应用,使得铁路系统的运输效率得到了显著提升。
铁路系统的复杂性决定了它对信息的敏感程度。而大数据技术的应用给铁路系统带来了许多优势。首先,大数据的分析能力使得铁路系统能够准确把握市场需求,做出更加精确的决策。其次,铁路系统可以通过大数据技术对其他交通工具的动向进行分析,从而做出合理的多式联运策略。此外,大数据的实时性与及时性,使得铁路系统能够及时发现问题并采取措施,以最大限度地减少运输事故和故障。总而言之,大数据技术为铁路系统带来的优势是多方面的,不仅提高了系统的运输能力和效率,也为乘客提供了更好的出行体验。
然而,铁路大数据的应用也面临着一些挑战。首先,铁路系统需要在保护用户隐私的前提下收集大量的数据,这对数据的安全性提出了更高的要求。其次,铁路系统需要建立庞大的数据中心,并拥有强大的计算能力来应对海量数据的处理。此外,铁路系统需要招聘高素质的数据分析师和系统开发人员,以确保数据的准确性和分析结果的可靠性。这些都是铁路大数据应用的挑战,需要铁路部门在运用大数据技术时充分考虑。
参与铁路大数据项目的过程中,我不仅学到了大数据技术的应用方法和分析技巧,更深刻地体会到了数据对铁路运输的重要性。大数据技术的引入,使得铁路系统的决策更加科学、更加准确;大数据的分析能力,为铁路运输提供了更好的保障和服务;大数据的应用,提高了铁路系统的运输效率和用户体验。这些收获也让我认识到,在信息化时代,各行各业都离不开大数据,而对大数据的理解和掌握已成为核心竞争力。
第五段:对未来的展望。
铁路大数据是未来铁路系统发展的重要方向之一,它将带来更多的便利和发展机遇。在未来,铁路系统可以进一步提高大数据技术的应用,不仅用于运输管理和票务安排,还可以与其他领域进行深度融合,比如智慧城市建设、物流运输等方面。并且,铁路大数据还可以通过人工智能和机器学习等技术与自动化运输系统相结合,提高运输效率和安全性。展望未来,铁路大数据将为人们出行带来更多的创新和便捷。
随着时代的发展,大数据已经成为了各行各业的核心竞争力,铁路系统也不例外。经过对铁路大数据的应用和体验中,我们发现大数据的分析能力和实时性给铁路运输管理带来了巨大变革。同时,大数据的应用也面临着挑战,需要我们不断学习和拓展技能。未来,铁路大数据将继续发展,并与其他技术相结合,为人们的出行提供更好的服务和保障。铁路大数据已经走进了我们的生活,让我们共同期待它为我们带来的更多惊喜和进步。
大数据课设的心得体会篇十五
这本书里主要介绍的是大数据在现代商业运作上的应用,以及它对现代商业运作的影响。
《大数据时代》这本书的结构框架遵从了学术性书籍的普遍方式。也既,从现象入手,继而通过对现象的解剖提出对这一现象的解释。然后在通过解释在对未来进行预测,并对未来可能出现的问题提出自己看法与对策。
下面来重点介绍《大数据时代》这本书的主要内容。
《大数据时代》开篇就讲了google通过人们在搜索引擎上搜索关键字留下的数据提前成功的预测了20xx年美国的h1n1的爆发地与传播方向以及可能的潜在患者的事情。google的预测比政府提前将近一个月,相比之下政府只能够在流感爆发一两个周之后才可以弄到相关的数据。同时google的预测与政府数据的相关性高达97%,这也就意味着google预测数据的置信区间为3%,这个数字远远小于传统统计学上的常规置信区间5%!而这个数字就是大数据时代预测结果的相对准确性与事件的可预测性的最好证明!通过这一事以及其他的案例,维克托提出了在大数据时代“样本=总体”的思想。我们都知道当样本无限趋近于总体的时候,通过计算得到的描述性数据将无限的趋近于事件本身的性质。而之前采取的“样本总体”的做法很大程度上无法做到更进一步的描述事物,因为之前的时代数据的获取与存储处理本身有很大的难度只导致人们采取抽样的方式来测量事物。而互联网终端与计算机的出现使数据的获取、存储与处理难度大大降低,因而相对准确性更高的“样本=总体”的测算方式将成为大数据时代的主流,同时大数据时代本身也是建立在大批量数据的存储与处理的基础之上的。
接下来,维克多又通过了ibm追求高精确性的电脑翻译计划的失败与google只是将所有出现过的相应的文字语句扫描并储存在词库中,所以无论需要翻译什么,只要有联系google词库就会出现翻译,虽然有的时候的翻译很无厘头,但是大多数时候还是正确的,所以google的电脑翻译的计划的成功,表明大数据时代对准确性的追求并不是特别明显,但是相反大数据时代是建立在大数据的基础住上的,所以大数据时代追求的是全方位覆盖的数字测度而不管其准确性到底有多高,因为大量的数据会湮埋少数有问题的数据所带来的影响。同时大量的数据也会无限的逼近事物的原貌。
之后,维克托又预测了一个在大数据时代催生的重要职业——数据科学家,这是一群数学家、统计学与编程家的综合体,这一群人将能够从获取的数据中得到任何他们想要的结果。换言之,只要数据充足我们的一切外在的与内在的我们不想让他人知道的东西都见会在这一群家伙的面前展现得淋漓尽致。所以为了避免个人隐私在大数据时代被这一群人利用,维克托建议将这一群人分为两部分,一部分使用数据为商业部门服务,而另一群人则负责审查这一些人是否合法的获得与应用数据,是否侵犯了个人隐私。
无论如何,大数据时代将会到来,不管我们接受还是不接受!
我觉得《大数据时代》这本书写的很好,很值得一读。因为会给我们很多启发,比如你在相关的社交网站发表的言论或者照片都很有可能被“数据科学家”们利用,从而再将相关数据卖给各大网店。不过,事实就是我们将会成为被预测被引诱的对象。所以说,小心你在网上留下的痕迹。
我喜欢这本书是因为它给我展现了一个新的世界。
大数据课设的心得体会篇十六
在《大数据时代》一书中,大数据时代与小数据时代的区别:1、思维惯例。大数据时代区别与转变就是,放弃对因果关系的渴求,而取而代之关注相关关系。也就是说只要知道“是什么”,而不需要知道“为什么”。作者语言绝对,却反思其本质区别。数据的更多、更杂,导致应用主意只能尽量观察,而不是倾其所有进行推理?这也是明智之举2、使用用途。小数据停留在说明过去,大数据用驱动过去来预测未来。笔者认为数据的用途意在何为,与数据本身无关,而与数据的解读者有关,而相关关系更有利于预测未来。3、结构。大数据更多的体现在海量非结构化数据本身与处理方法的整合。大数据更像是理论与现实齐头并进,理论来创立处理非结构化数据的方法,处理结果与未来进行验证。4、分析基础。大数据是在互联网背景下数据从量变到质变的过程。笔者认为,小数据时代也即是信息时代,是大数据时代的前提,大数据时代是升华和进化,本质是相辅相成,而并非相离互斥。
数据未来的故事。数据的发展,给我们带来什么预期和启示?银行业天然有大数据的潜质。客户数据、交易数据、管理数据等海量数据不断增长,海量机遇和挑战也随之而来,适应变革,适者生存。我们可以有更广阔的业务发展空间、可以有更精准的决策判断能力、可以有更优秀的经营管理能力??可以这些都基于数据的收集、整理、驾驭、分析能力,基于脱颖而出的创新思维和执行。因此,建设“数据仓库”,培养“数据思维”,养成“数据治理”,创造“数据融合”,实现“数据应用”才能拥抱“大数据”时代,从数据中攫取价值,笑看风云变换,稳健赢取未来。