当前位置:网站首页 >> 168彩票下载星空娱乐 >> 2023年平面几何证明题及答案(五篇)

2023年平面几何证明题及答案(五篇)

格式:DOC 上传日期:2024-03-20 20:43:08
2023年平面几何证明题及答案(五篇)
时间:2024-03-20 20:43:08     小编:zdfb

每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。范文怎么写才能发挥它最大的作用呢?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了解一下吧。

平面几何证明题及答案篇一

惠特霍斯曾说过,“一般地,解题之所以成功,在很大程度上依赖于选择一种最适宜的方法。”灵活、恰当地选择解题方法是求解平面几何问题的良好途径。解决任何一道平面几何证明题,都要应用这样或那样的方法,而选择哪一种方法,就取决于我们用什么样的解题思路。由此可见,掌握证明题的一般思路、探索证题过程中的数学思维、总结证题的基本规律是求解几何证明题的关键。常见的证题思路有直接式思路和间接式思路。

一、直接式思路

首先应仔细审查题意,细心观察题目,分清条件和结论,并尽量挖掘题目中隐含的一些解题信息,以在缜密审题的基础上,根据定义、公式、定理进行一系列正面的逻辑推理,最后得出命题的证明,这种证题的思路被称为直接式思路。

掌握分析、证明几何问题的常用方法:

(一)顺藤摸瓜”法(由因导果)

该类问题特点:条件很充分且直观,一般属于a级难度的题目,需要我们从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决。

(二)逆向思维”法(执果索因)

该类问题特点:一般已知条件较少。从正常思维难以入手,一般属于b或c级难度题目。该类问题从求证结论开始逆向推导,一步一步追溯到已知条件,从而进行求解。

(三)天佑开凿铁路”法(从两头向中间)

该类问题特点:题目条件和结论之间关系比较隐秘,难于直接它们之的必然联系,该类问题属于c级难度的题目。

方法:

1、知条件入手,看能得到什么结果就写出什么结果,与结论相关的辅助线能作就作;

2、结论入手,运用逆向思维,看能推导出什么结果就写什么结果;

3、联想,探索推导两次推导结果之中直接或隐性的关系,然后整理从条件推导结论的推导思路,再一步步写出推导过程。

注:该类问题在写出各种推导结果是需注意条理性,忌杂乱无章!

二、间接式思路

有些命题往往不易甚至不能直接证明,这时,不妨证明它的等效命题,以间接地达到目标,这种证题思路就称为间接式思路。我们常运用的反证法、同一法证题就是两种典型的用间接式思路证题的方法。

(一)反证法。具体地说,在证明一个命题时,如正面不易入手,就要从命题结论的反面入手,先假设结论的逆命题成立,如果由此假设进行严格推理,推导出的结果与已知条件、公式、定理、定义、假设等的其中一个相矛盾,或者推出两个相互矛盾的结果,就证明了结论的逆命题是错误,从而得出结论的正面成立,这种证题方法就叫做反证法。

反证法证题通常有如下三个步骤:

1、反设。作出与结论相反的假设,通常称这种假设为反证假设。

2、归谬。利用反证假设和已知条件,进行符合逻辑的推理,推出与某个已知条件、公理、定

义等相矛盾的结果。根据矛盾律,在推理和论证的过程中,在同时间、同关系下,不能对同一对象作出两个相反的论断,可知反证假设不成立。

3、得出结论。根据排除率,即在同一论证过程中,命题c与命题非c有且仅有一个是正确的,可知原结论成立。

(二)同一法。欲证某图形具有某种性质而又比较繁杂或不易直接证明时,有时可以作出具有所示性质的图形,然后证明所作的图形与所给的某图形就是同一个,由此把它们等同起来,这种证法叫做同一法。

例如,同一法证平面几何问题的步骤如下:

1、出符合命题结论的图形;证明所作图形符合已知条件;

2、根据唯一性,确定所作的图形与已知图形吻合;

3、断定命题的真实性。

同一法和反证法都是间接式思路的方法。其中,同一法的局限性较大,通常只适合于符合同一原理的命题;反证法的适用范围则广泛一些,能够用反证法证明的命题,不一定能用同一法论证,但对于能够用同一法证明的命题,一般都能用反证法加以证明。

在证题过程中,不论是直接思路还是间接思路,都要进行一系列正确的推理,需要解题者对扑朔迷离的表象进行由表及里、去伪存真地分析、加工和改造,并从不同方向探索,以在广阔的范围内选择思路,从而及时纠正尝试中的错误,最后获得命题的证明。

平面几何证明题及答案篇二

平面几何证明题的一般思路及方法简述

【摘 要】惠特霍斯曾说过,“一般地,解题之所以成功,在很大程度上依赖于选择一种最适宜的方法。”灵活、恰当地选择解题方法是求解平面几何问题的良好途径。解决任何一道平面几何证明题,都要应用这样或那样的方法,而选择哪一种方法,就取决于我们用什么样的解题思路。本文试对平面几何证明题中常用的几种解题思路及方法进行分析。

【关键词】平面几何 证明题 思路 方法

平面几何难学,是很多初中生在学习中的共识,这里面包含了很多主观和客观因素,而学习不得法,没有适当的解题思路则是其中的一个重要原因。波利亚曾说过,“解题的成功要靠正确思路的选择,要靠从可以接近它的方向去攻击堡垒。为了辨别哪一条思路正确,哪一个方向可接近它,就要试探各种方向和思路。”由此可见,掌握证明题的一般思路、探索证题过程中的数学思维、总结证题的基本规律是求解几何证明题的关键。常见的证题思路有直接式思路和间接式思路。

一、直接式思路

证题时,首先应仔细审查题意,细心观察题目,分清条件和结论,并尽量挖掘题目中隐含的一些解题信息,以在缜密审题的基础上,根据定义、公式、定理进行一系列正面的逻辑推理,最后得出命题的证明,这种证题的思路被称为直接式思路。由于思维方式的逆顺,在证题时运用的方法主要有“分析法”和“综合法”。

1.分析法。分析法是从命题的结论入手,先承认它是正确的,执果索因,寻求结论正确的条件,这样一步一步逆而推之,直到与题设会合,于是就得出了由题设通往结论的思维过程。在由结论向已知条件的寻求追溯过程中,则由于题设条件的不同,或已知条件之间关系的隐含程度不同等,寻求追溯的形式会有一定差异,因而常把分析法分为以下四种类型。

(1)选择型分析法。选择型分析法解题,首先要从题目要求解的结论a出发,逐步把问题转化为分析要得出结论a需要哪些充分条件。假设有条件b,就有结论a,那么b就成为选择找到的使a成立的充分条件,然后再分析在什么条件下能选择得到b„„最终追溯到命题中的某一题设条件。

(2)可逆型分析法。如果再从结论向已知条件追溯的过程中,每一步都是推求的充分必要条件,那么这种分析法又叫可逆型分析法,因而,可逆型分析法是选择型分析法的特殊情形。用可逆型分析法证明的命题用选择型分析法一定能证明,反之用选择型分析法证明的命题,用可逆型分析不一定能证明。

(3)构造型分析法。如果在从结论向已知条件追溯的过程中,在寻找新的充分条件的转化“三岔口”处,需采取相应的构造型措施:如构造一些条件,作某些辅助图等,进行探讨、推导,才能追溯到原命题的已知条件的分析法叫做构造型分析法。

(4)设想型分析法。在向已知条件追溯的过程中,借助于有根据的设想、假定,形成“言之成理”的新构思,再进行“持之有据”的验证,逐步地找出正确途径的分析法称为设想型分析法。

2.综合法。综合法则是由命题的题设条件入手,由因导果,通过一系列的正确推理,逐步靠近目标,最终获得结论。再从已知条件着手,根据已知的定义、公式、定理,逐步推导出结论。在这一过程中,由于思考角度不同,立足点不同,综合法常分为四种类型:

(1)分析型综合法。我们把分析法解题的叙述倒过来,稍加整理而得到的解法称为分析型综合法。

(2)奠基型综合法。当由已知条件着手较难,或没有熟悉的模式可供归纳推导,就可转而寻找简单的模式,然后再将一般情形化归到这个简单的模式中来,这样的综合法称为奠基型综合法。

(3)媒介型综合法。当问题给出的已知条件较少,且看不出与所求结论的直接联系时,或条

件关系松散且难以利用时,就要去有意识地寻找、选择并应用媒介实现过渡,这样的综合法就称之为媒介型综合法。

(4)解析型综合法。解题时,运用解析法的思想制定解题的大体计划和方向,然后并不真用解析法来实现这个计划,而用综合法来实现,这种综合法被称为解析型综合法。

在具体证题时,这两种方法可单独运用,也可配合运用,在分析中有综合,在综合中有分析,以进行交叉使用。

二、间接式思路

有些命题往往不易甚至不能直接证明,这时,不妨证明它的等效命题,以间接地达到目标,这种证题思路就称为间接式思路。我们常运用的反证法、同一法证题就是两种典型的用间接式思路证题的方法。

1.反证法。具体地说,在证明一个命题时,如正面不易入手,就要从命题结论的反面入手,先假设结论的反面成立,如果由此假设进行严格推理,推导出的结果与已知条件、公式、定理、定义、假设等的其中一个相矛盾,或者推出两个相互矛盾的结果,就证明了“结论反面成立”的假设是错误的,从而得出结论的正面成立,这种证题方法就叫做反证法。当结论的反面只有一个时,否定了这一个便完成证明,这种较单纯的反证法又叫做归谬法;而当结论的反面有若干个时,就必须驳倒其中的每一个,这种较繁琐的反证法又称为穷举法。

反证法证题通常有如下三个步骤:

(1)反设。作出与结论相反的假设,通常称这种假设为反证假设。

(2)归谬。利用反证假设和已知条件,进行符合逻辑的推理,推出与某个已知条件、公理、定义等相矛盾的结果。根据矛盾律,在推理和论证的过程中,在同时间、同关系下,不能对同一对象作出两个相反的论断,可知反证假设不成立。

(3)得出结论。根据排除率,即在同一论证过程中,命题c与命题非c有且仅有一个是正确的,可知原结论成立。

2.同一法。欲证某图形具有某种性质而又比较繁杂或不易直接证明时,有时可以作出具有所示性质的图形,然后证明所作的图形与所给的某图形就是同一个,由此把它们等同起来,这种证法叫做同一法。

例如,同一法证平面几何问题的步骤如下:作出符合命题结论的图形;证明所作图形符合已知条件;根据唯一性,确定所作的图形与已知图形吻合;断定命题的真实性。

同一法和反证法都是间接式思路的方法。其中,同一法的局限性较大,通常只适合于符合同一原理的命题;反证法的适用范围则广泛一些,能够用反证法证明的命题,不一定能用同一法论证,但对于能够用同一法证明的命题,一般都能用反证法加以证明。

在证题过程中,不论是直接思路还是间接思路,都要进行一系列正确的推理,需要解题者对扑朔迷离的表象进行由表及里、去伪存真地分析、加工和改造,并从不同方向探索,以在广阔的范围内选择思路,从而及时纠正尝试中的错误,最后获得命题的证明。

平面几何证明题及答案篇三

平面几何证明题的一般思路及方法简述

【摘 要】惠特霍斯曾说过,“一般地,解题之所以成功,在很大程度上依赖于选择一种最适宜的方法。”灵活、恰当地选择解题方法是求解平面几何问题的良好途径。解决任何一道平面几何证明题,都要应用这样或那样的方法,而选择哪一种方法,就取决于我们用什么样的解题思路。本文试对平面几何证明题中常用的几种解题思路及方法进行分析。

【关键词】平面几何 证明题 思路 方法

平面几何难学,是很多初中生在学习中的共识,这里面包含了很多主观和客观因素,而学习不得法,没有适当的解题思路则是其中的一个重要原因。波利亚曾说过,“解题的成功要靠正确思路的选择,要靠从可以接近它的方向去攻击堡垒。为了辨别哪一条思路正确,哪一个方向可接近它,就要试探各种方向和思路。”由此可见,掌握证明题的一般思路、探索证题过程中的数学思维、总结证题的基本规律是求解几何证明题的关键。常见的证题思路有直接式思路和间接式思路。

一、直接式思路

证题时,首先应仔细审查题意,细心观察题目,分清条件和结论,并尽量挖掘题目中隐含的一些解题信息,以在缜密审题的基础上,根据定义、公式、定理进行一系列正面的逻辑推理,最后得出命题的证明,这种证题的思路被称为直接式思路。由于思维方式的逆顺,在证题时运用的方法主要有“分析法”和“综合法”。

1.分析法。分析法是从命题的结论入手,先承认它是正确的,执果索因,寻求结论正确的条件,这样一步一步逆而推之,直到与题设会合,于是就得出了由题设通往结论的思维过程。在由结论向已知条件的寻求追溯过程中,则由于题设条件的不同,或已知条件之间关系的隐含程度不同等,寻求追溯的形式会有一定差异,因而常把分析法分为以下四种类型。

(1)选择型分析法。选择型分析法解题,首先要从题目要求解的结论a出发,逐步把问题转化为分析要得出结论a需要哪些充分条件。假设有条件b,就有结论a,那么b就成为选择找到的使a成立的充分条件,然后再分析在什么条件下能选择得到b„„最终追溯到命题中的某一题设条件。

(2)可逆型分析法。如果再从结论向已知条件追溯的过程中,每一步都是推求的充分必要条件,那么这种分析法又叫可逆型分析法,因而,可逆型分析法是选择型分析法的特殊情形。用可逆型分析法证明的命题用选择型分析法一定能证明,反之用选择型分析法证明的命题,用可逆型分析不一定能证明。

(3)构造型分析法。如果在从结论向已知条件追溯的过程中,在寻找新的充分条件的转化“三岔口”处,需采取相应的构造型措施:如构造一些条件,作某些辅助图等,进行探讨、推导,才能追溯到原命题的已知条件的分析法叫做构造型分析法。

(4)设想型分析法。在向已知条件追溯的过程中,借助于有根据的设想、假定,形成“言之成理”的新构思,再进行“持之有据”的验证,逐步地找出正确途径的分析法称为设想型分析法。

2.综合法。综合法则是由命题的题设条件入手,由因导果,通过一系列的正确推理,逐步靠近目标,最终获得结论。再从已知条件着手,根据已知的定义、公式、定理,逐步推导出结论。在这一过程中,由于思考角度不同,立足点不同,综合法常分为四种类型:

(1)分析型综合法。我们把分析法解题的叙述倒过来,稍加整理而得到的解法称为分析型综合法。

(2)奠基型综合法。当由已知条件着手较难,或没有熟悉的模式可供归纳推导,就可转而寻找简单的模式,然后再将一般情形化归到这个简单的模式中来,这样的综合法称为奠基型综合法。

(3)媒介型综合法。当问题给出的已知条件较少,且看不出与所求结论的直接联系时,或条件关系松散且难以利用时,就要去有意识地寻找、选择并应用媒介实现过渡,这样的综合法就称之为媒介型综合法。

(4)解析型综合法。解题时,运用解析法的思想制定解题的大体计划和方向,然后并不真用解析法来实现这个计划,而用综合法来实现,这种综合法被称为解析型综合法。

在具体证题时,这两种方法可单独运用,也可配合运用,在分析中有综合,在综合中有分析,以进行交叉使用。

二、间接式思路

有些命题往往不易甚至不能直接证明,这时,不妨证明它的等效命题,以间接地达到目标,这种证题思路就称为间接式思路。我们常运用的反证法、同一法证题就是两种典型的用间接式思路证题的方法。

1.反证法。具体地说,在证明一个命题时,如正面不易入手,就要从命题结论的反面入手,先假设结论的反面成立,如果由此假设进行严格推理,推导出的结果与已知条件、公式、定理、定义、假设等的其中一个相矛盾,或者推出两个相互矛盾的结果,就证明了“结论反面成立”的假设是错误的,从而得出结论的正面成立,这种证题方法就叫做反证法。当结论的反面只有一个时,否定了这一个便完成证明,这种较单纯的反证法又叫做归谬法;而当结论的反面有若干个时,就必须驳倒其中的每一个,这种较繁琐的反证法又称为穷举法。

反证法证题通常有如下三个步骤:

(1)反设。作出与结论相反的假设,通常称这种假设为反证假设。

(2)归谬。利用反证假设和已知条件,进行符合逻辑的推理,推出与某个已知条件、公理、定义等相矛盾的结果。根据矛盾律,在推理和论证的过程中,在同时间、同关系下,不能对同一对象作出两个相反的论断,可知反证假设不成立。

(3)得出结论。根据排除率,即在同一论证过程中,命题c与命题非c有且仅有一个是正确的,可知原结论成立。

2.同一法。欲证某图形具有某种性质而又比较繁杂或不易直接证明时,有时可以作出具有所示性质的图形,然后证明所作的图形与所给的某图形就是同一个,由此把它们等同起来,这种证法叫做同一法。

例如,同一法证平面几何问题的步骤如下:作出符合命题结论的图形;证明所作图形符合已知条件;根据唯一性,确定所作的图形与已知图形吻合;断定命题的真实性。

同一法和反证法都是间接式思路的方法。其中,同一法的局限性较大,通常只适合于符合同一原理的命题;反证法的适用范围则广泛一些,能够用反证法证明的命题,不一定能用同一法论证,但对于能够用同一法证明的命题,一般都能用反证法加以证明。

在证题过程中,不论是直接思路还是间接思路,都要进行一系列正确的推理,需要解题者对扑朔迷离的表象进行由表及里、去伪存真地分析、加工和改造,并从不同方向探索,以在广阔的范围内选择思路,从而及时纠正尝试中的错误,最后获得命题的证明。

平面几何证明题及答案篇四

初中几何证明题

1.如图,分别以△abc的边ab、ac为边,向外作正方形abfg和acde,连接eg 求证:s△abcs△

aeg

2.如图,分别以△abc的边ab、ac为边,向外作正方形abfg和acde,连接eg。若o为eg的中点

求证:bc=2ao

3.如图,分别以△abc的边ab、ac为边,向外作正方形abfg和acde,连接eg,若o为eg的中点,oa的延长线交bc于点h

求证:ah⊥

bc

bc,ha的延长线交eg于点o

求证:o为eg的中点

5.如图,分别以△abc的边ab、ac为边,向外作正方形abfg和acde,连接be,cg 求证:

(1)be=cg

(2)be⊥cg

6.如图,分别以△abc的边ab、ac为边,向外作正方形abfg和acde,连接be,cg 作fm⊥bc,交cb的延长线于点m,作dn⊥bc,交bc的延长线于点n

求证:fm+dn=bc

o是fd中点,op⊥bc于点p

求证:bc=2op

8.如图,分别以△abc的边ab、ac为边,向外作正方形abfg和acde,连接ce,bg、ge m、n、p、q分别是eg、gb、bc、ce的中点

求证:四边形mnpq是正方形

平面几何证明题及答案篇五

九年级数学练习题

1.如图,分别以△abc的边ab、ac为边,向外作正方形abfg和acde,连接eg

求证:s△abcs△

aeg

2.如图,分别以△abc的边ab、ac为边,向外作正方形abfg和acde,连接eg。若o为eg的中点 求证:eg=2ao

3.如图,分别以△abc的边ab、ac为边,向外作正方形abfg和acde,连接eg,若o为eg的中点,oa的延长线交bc于点h

求证:ah⊥

bc

4.如图,分别以△abc的边ab、ac为边,向外作正方形abfg和acde,连接eg,若ah⊥bc,ha的延长线交eg于点o

求证:o为eg的中点

5.如图,分别以△abc的边ab、ac为边,向外作正方形abfg和acde,连接be,cg 求证:

(1)be=cg

(2)be⊥cg

6.如图,分别以△abc的边ab、ac为边,向外作正方形abfg和acde,连接be,cg 作fm⊥bc,交cb的延长线于点m,作dn⊥bc,交bc的延长线于点n

求证:fm+dn=bc

7.如图,分别以△abc的边ab、ac为边,向外作正方形abfg和acde,连接be,cg、fd o是fd中点,op⊥bc于点p

求证:bc=2op

8.如图,分别以△abc的边ab、ac为边,向外作正方形abfg和acde,连接ce,bg、ge m、n、p、q分别是eg、gb、bc、ce的中点

求证:四边形mnpq是正方形

全文阅读已结束,如果需要下载本文请点击

下载此文档
a.付费复制
付费获得该文章复制权限
特价:5.99元 10元
微信扫码支付
已付款请点这里
b.包月复制
付费后30天内不限量复制
特价:9.99元 10元
微信扫码支付
已付款请点这里 联系客服
Baidu
map