当前位置:网站首页 >> 168彩票下载星空娱乐 >> 风力发电报告总结(4篇)

风力发电报告总结(4篇)

格式:DOC 上传日期:2023-01-11 18:37:12
风力发电报告总结(4篇)
时间:2023-01-11 18:37:12     小编:zdfb

在当下这个社会中,报告的使用成为日常生活的常态,报告具有成文事后性的特点。优秀的报告都具备一些什么特点呢?又该怎么写呢?下面我给大家整理了一些优秀的报告范文,希望能够帮助到大家,我们一起来看一看吧。

风力发电报告总结篇一

一、对调峰、调频与备用的影响

大规模风电并网的重要制约因素是电网可为风电提供的调峰能力,必须利用全网的调峰、调频能力进行统一平衡,时,常规机组减少出力为风电提供空间。电接入电网功率。风电的反调峰特性,例如,东北电网受冬季火电机组供热影响,反调峰特性,使得系统调峰异常困难,进入制风电出力,最多时限制近

二、对电压与无功功率控制的影响风电机组类型不同,无功功率特性差异很大。早期的风电场多采用的是固定转速风电机组—异步发电机,吸收系统无功且无功不可控,功控制。风机的无功功率不可控,必然导致电压忽高忽低,无功补偿装置频繁投切。风电对系统的电压要求很高(电压偏差不得超过应用的变速风电机组—双馈异步电机和直驱风电机组在1.0,不向系统吸收无功,解决了部分无功电压问题,但不具备恒电压调节能力。区域性无功电压调节问题还需要通过安装svc等动态无功补偿装置、输电通道动态无功补偿设备以及频繁投切的低容低抗来实现。[5]风电功率波动影响主网潮流分布,同时电压波动使无功补偿设备频繁投切。风电场的利用小时数很低一般在电场送出线路长时间会处于轻载状态,电压必然偏高,低抗将长时间投入运行。

三、对电能质量的影响有相当一部分风电机组直接并入配电网,由此带来的电能质量问题尤为突出。电压波动和闪变:风力发电机组大多采用软并网方式,但是在启动时仍会产生较大的冲击电流。当风速超过切出风速时,乎同时动作,这种冲击对配电网的影响十分明显。都会导致风机出力的波动,而其波动正好处在能够产生电压闪变的频率范围之内(低于hz),因此,风机在正常运行时也会给电网带来闪变问题,影响电能质量。电给系统带来谐波的途径主要有两种。接和电网相连的固定转速风电机组,定的谐波,不过过程很短,发生的次数也不多,通常可以忽略。但是对于变速风电机组则不然,变速风电机组通过整流和逆变装置接入系统,谐波的范围内,则会产生很严重的谐波问题,逐步得到解决。另一种是风力发电机的并联补偿电容器可能和线路电抗发生谐振,行中,曾经观测到风电场出口变压器的低压侧产生大量谐波的现象。才能保证全额接受风电和电网安全稳定运行。风电功率具有不确定性,将导致负荷峰谷差增大,使得系统调峰异常困难。火电机组固有的调峰能力大为下降,2008 年冬季以后,多次因低谷调峰问题被迫限400 mw。[6]

需后期改造以配备相应的补偿装置来进行无10%),但它本身就是一个无功干扰源。目前普遍—永磁同步机能够保证风机功率因数avc 等系统手段来实现。风电场提高电压控制手段一般通过2 100~2 400 h,机组出力小于额定功率

如果整个风电场所有风机几不但如此,风速的变化和风机的塔影效应一种是风力发电机本身配备的电力电子装置。软启动阶段要通过电力电子装置与电网相连,如果电力电子装置的切换频率恰好在产生随着电力电子器件的不断改进,当风电功率增加5%的概率最大,所以风[6]谐波污染:风这一问题也在[4][2]

[5]25 对于直会产生一在实际运系统调峰裕度必须大于风加之风电的风机会从额定出力状态自动退出运行。

四、对发电计划与调度的影响

风能的不可控性使得对风电不可能像对其他传统电源一样可以进行可靠预测。风电场并 网以后,电网的可用调峰容量减去用于平衡负荷波动的备用容量后,剩余的可用调峰容量都能够用于为风电调峰,但如果整个电网可用于风电的调峰容量有限,则风电场的实际运行就会受到一定的限制,在电网无法完全平衡风电场的功率波动时,需要限制风电注人电网的功率。[4]由于当前我国电网中风电的比例不高,因此在电网调度工作中一般不把风电纳入电网调度.且由于尚未开展风电功率预测的研究与应用,因此风电功率的波动对于电网而言完全是随机的,最严重的情况就等于整个风电装机容量大小的风电功率在短时间内的波动,虽然发生这种情况的概率较小,但是在实际运行中仍无法排除发生这种情况的可能性由于系统需要有与风 电场额定容量相当的备用容量,在风停时替代风电场,这使得风电上网成本增加。目前,我国相关省区电网调度根据风由各省自行平衡,基本上不安排风电的发电调度计划。

结语

随着气候的变迁,环境的恶化资源的短缺发展新的清洁可再生能源已成为一种趋势合理地开发和利用风能成为解决矛盾的一种方法,的成果,对我国电网进一步的改造和开发新技术以支撑风电的大规模并网.的快速稳步发展。

参考文献:

[1]裴哲义,董存,辛耀中。我国风电并网运行最新进展[2]张洋,风电场无功补偿容量及其控制方法的研究[3]陈向民,姚强。风力发电前经济技术分析[4]胡斌,杨鹏举。关于风电接入系统若干问题的思考[5]吴雄飞。大型风电并网系统电压稳定性研究[6]电监会.我国风电发展情况 调研报告

只要结合我国的实际情况,[j] 新能源 [d].长春[j] 科技创新导报[j] 中国电力教育[j ]宣称供电公司[d].北京 :国家电力监管委员会借鉴国外已有以支持国民经济 第11期

:东北电力大学,2010 no.35

2010,2005. 36期 2009.

电场实际发电出力对网内其他电厂出力进行调整,年第,

风力发电报告总结篇二

风力发电机原理

是将风能转换为机械功的动力机械,又称风车。广义地说,它是一种以太阳为热源,以大气为工作介质的热能利用发动机。风力发电利用的是自然能源。相对柴油发电要好的多。但是若应急来用的话,还是不如柴油发电机。风力发电不可视为备用电源,但是却可以长期利用。力发电的原理:是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。

现状:风力发电正在世界上形成一股热潮,风力发电在芬兰、丹麦等国家很流行;我国风能资源十分丰富,我国也在西部地区大力提倡,管理滞后影响风电“进步”首先,我国对风能资源的普查、评价、规划管理严重滞后,资源分散,缺少整合,没有形成全国统一的国家级风电产业研机机构,缺少对产业资源的集中和整合。

其次,单位kw造价高,火电平均4500元/kw,风电平均每8000~9000元/kw,平均造价高于火电。火电平均电价0.36元/千瓦时,风电平均电价为0.56元/千瓦时,在我国南方地区电价,还要略高于北方地区。影响电网并网发电的积极性。第三,目前市场和产业化基本上没有形成,风电机组和系统设计技术、设备性能、效率以及技术工艺水平与欧洲相比存在很大差距。国产风电关键部件,如液压系统、联合器、电控等可靠性差,技术不够成熟。

改善“环境”加快风电步伐

前景:它的优势不需要燃料、不占耕地、没有污染,运行成本低。;风力发电产业发展前景非常广阔,为风力发电没有燃料问题,也不会产生辐射或空气污染。

我国风能资源十分丰富,它是一种干净的可再生能源;风力发电产业发展前景非常广阔,优缺点:它的优势不需要燃料、不占耕地、没有污染,运行成本低,我国风力资源丰富,缺点,效率低,造价昂贵,技术有待改进,管理不够完善

风力发电的原理,是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。依据目前的风车技术,大约是每秒三公尺的微风速度(微风的程度),便可以开始发电。风力发电正在世界上形成一股热潮,因为风力发电没有燃料问题,也不会产生辐射或空气污染。风力发电在芬兰、丹麦等国家很流行;我国也在西部地区大力提倡。小型风力发电系统效率很高,但它不是只由一个发电机头组成的,而是一个有一定科技含量的小系统:风力发电机+充电器+数字逆变器。风力发电机由机头、转体、尾翼、叶片组成。每一部分都很重要,各部分功能为:叶片用来接受风力并通过机头转为电能;尾翼使叶片始终对着来风的方向从而获得最大的风能;转体能使机头灵活地转动以实现尾翼调整方向的功能;

机头的转子是永磁体,定子绕组切割磁力线产生电能。风力发电机因风量不稳定,故其输出的是13~25v变化的交流电,须经充电器整流,再对蓄电瓶充电,使风力发电机产生的电能变成化学能。然后用有保护电路的逆变电源,把电瓶里的化学能转变成交流220v市电,才能保证稳定使用。机械连接与功率传递水平轴风机桨叶通过齿轮箱及其高速轴与万能弹性联轴节相连,将转矩传递到发电机的传动轴,此联轴节应按具有很好的吸收阻尼和震动的特性,表现为吸收适量的径向、轴向和一定角度的偏移,并且联轴器可阻止机械装置的过载。另一种为直驱型风机桨叶不通过齿轮箱直接与电机相连风机电机类型

风力发电报告总结篇三

风力发电

风能作为一种清洁的可再生能源,越来越受到世界各国的重视。风很早就被人们利用--主要是通过风车来抽水、磨面等,而现在,人们感兴趣的是如何利用风来发电。风是一种潜力很大的新能源,十八世纪初风力发电图,横扫英法两国的一次狂暴大风,吹毁了四百座风力磨坊、八百座房屋、一百座教堂、四百多条帆船,并有数千人受到伤害,二十五万株大树连根拔起。人估计过,地球上可用来发电的风力资源约有100亿千瓦,几乎是现在全世界水力发电量的10倍。目前全世界每年燃烧煤所获得的能量,只有风力在一年内所提供能量的三分之一。因此,国内外都很重视利用风力来发电,开发新能源。利用风力发电的尝试,早在二十世纪初就已经开始了。三十年代,丹麦、瑞典、苏联和美国应用航空工业的旋翼技术,成功地研制了一些小型风力发电装置。这种小型风力发电机,广泛在多风的海岛和偏僻的乡村使用,它所获得的电力成本比小型内燃机的发电成本低得多。不过,当时的发电量较低,大都在5千瓦以下

风力发电所需要的装置,称作风力发电机组。这种风力发电机组,大体上可分风轮(包括尾舵)、发电机和铁塔三部分。

优点

1、清洁,环境效益好;

2、可再生,永不枯竭;

3、基建周期短;

4、装机规模灵活。

缺点

1、噪声,视觉污染;

2、占用大片土地;

3、不稳定,不可控;

4、目前成本仍然很高。

5、影响鸟类。

风力发电报告总结篇四

国内外风力发电技术 的现状与发展趋势

风能是一种可再生的清洁能源。近30年来,国际上在风能的利用方面,无论是理论研究还是应用研究都取得了重大进步。风力发电技术日臻完善,并网型风力发电机单机额定功率最大已经到5mw,叶轮直径达到126m。截止2005年世界装机容量已达58,982mw,风力发电量占全球电量的1%。中国成为亚洲风电产业发展的主要推动者之一,其总装机容量居世界第8位,2005年新增装机容量居世界第6位。今后,国内外风力发电技术和产业的发展速度将明显加快。引

风是最常见的自然现象之一,是太阳对地球表面不均衡加热而引起的“空气流动”,流动空气具有的动能称之为风能。因此,风能是一种广义的太阳能。据世界气象组织(wmo)和中国气象局气象科学研究院分析,地球上可利用的风能资源为200亿kw,是地球上可利用水能的20倍。中国陆地10m高度层可利用的风能为2.53亿kw,海上可利用的风能是陆地上的3倍,50m高度层可利用的风能是10m高度层的2倍,风能资源非常丰富。

风能是一种技术比较成熟、很有开发利用前景的可再生能源之一[1]。风能的利用方式不仅有风力发电、风力提水,而且还有风力致热、风帆助航等。因此,开发利用风能对世界各国科技工作者具有极强的魅力,从而唤起了世界众多的科学家致力于风能利用方面的研究。在本文中,将对国内外风力发电技术的现状和发展趋势进行论述。风力发电基本知识

2.1 风能的计算公式

空气运动具有动能。风能是指风所具有的动能。如果风力发电机叶轮的断面积为a,则当风速为v的风流经叶轮时,单位时间风传递给叶轮的风能为

(1)

其中:单位时间质量流量m=ρav

(2)

在实际中,式中:

pw—每秒空气流过风力发电机叶轮断面面积的风能,即风能功率,w;

(3)cp—叶轮的风能利用系数;

m—齿轮箱和传动系统的机械效率,一般为0.80—0.95,直驱式风力发电机为1.0; e—发电机效率,一般为0.70—0.98; —空气密度,kg/m3;

a—风力发电机叶轮旋转一周所扫过的面积,m2; v—风速,m/s。

2.2 贝茨(betz)理论

第一个关于风轮的完整理论是由德国哥廷根研究所的a·贝茨于1926年建立的。

贝茨假定风轮是理想的,也就是说没有轮毂,而叶片数是无穷多,并且对通过风轮的气流没有阻力。因此这是一个纯粹的能量转换器。此外还进一步假设气流在整个风轮扫掠面上的气流是均匀的,气流速度的方向无论在风轮前后还是通过时都是沿着风轮轴线的。

通过分析一个放置在移动空气中的“理想”风轮得出风轮所能产生的最大功率为

—空气密度,kg/m3;

(4)

式中:pmax—风轮所能产生的最大功率;

a—风力发电机叶轮旋转一周所扫过的面积,m2; v—风速,m/s。

这个表达式称为贝茨公式。其假定条件是风速与风轮轴方向一致并在整个风轮扫掠面上是均匀的[2]。将(4)式除以气流通过扫掠面a时风所具有的动能,可推得风力机的理论最大效率

(5)

(5)式即为有名的贝兹(betz)理论的极限值。它说明,风力机从自然风中所能索取的能量是有限的,其功率损失部分可以解释为留在尾流中的旋转动能。

能量的转换将导致功率的下降,它随所采用的风力机和发电机的型式而异,因此,风力机的实际风能利用系数cp<0.593[3]。

2.3 温度、大气压力和空气密度

通过温度计和气压计测试出实验地点的环境温度和大气压,由下式计算出空气密度。

(6)

式中:ρ—空气密度,kg/m3; h—当地大气压力,pa; t—温度,℃。

从空气密度公式可以看出,空气密度的大小与大气压力、温度有关。

2.4 风力机的主要组成

1)小型风力发电机

小型水平轴风力机主要组成部分有:风轮、发电机、塔架、调向机构、蓄能系统、逆变器等。(1)风轮 风轮是风力机从风中吸收能量的部件,其作用是把空气流动的动能转变为风轮旋转的机械能。水平轴风力发电机的风轮是由1~3个叶片组成的。叶片的结构形式多样,材料因风力机型号和功率大小而定,如木心外蒙玻璃钢叶片、玻璃纤维增强塑料树脂叶片等。

(2)发电机

在风力发电机中,已采用的发电机有3种,即直流发电机、同步交流发电机和异步交流发电机。小型风力发电机多采用同步或异步交流发电机,发出的交流电通过整流装置转换成直流电。

(3)塔架

塔架用于支撑 发电机和调向机构等。因风速随离地面的高度增加而增加,塔架越高,风轮单位面积捕捉的风能越多,但造价、安装费等也随之加大。

(4)调向机构

垂直轴风力机可接受任何方向吹来的风,因此不需要调向机构。对于水平轴风力机,为了得到最高的风能利用效率,应用风轮的旋转面经常对准风向,需要对风装置。常用的调向机构主要有尾舵、舵轮、电动对风装置。

(5)限速机构

当风速高于风力机的设计风速时,为了防止叶片损坏,需要对风轮转速进行控制。(6)贮能装置

贮能装置对独立运行的小型风力机是十分重要的。其贮能方式有热能贮能、化学能贮存。(7)逆变器

用于将直流电转换为交流电,以满足交流电气设备用电的要求。2)大型风力发电机

大型风力发电机组由两大部分组成:气动机械部分和电气部分。气动机械部分包括风轮、低速轴、增速齿轮箱、高速轴,其功能是驱动发电机转子,将风能转换为机械能。电气部分包括异步发电机、电力电子变频器、变压器和电网,其功能是将机械能转换为频率恒定的电能。近年来,又研制成功了直驱式变速恒频风力发电机组(无增速齿轮箱)。风力机与风力发电技术

3.1 风力机与风力发电技术的发展史

风能,是人类最早使用的能源之一。远在公元前2000年,埃及、波斯等国已出现帆船和风磨,中世纪荷兰与美国已有用于排灌的水平轴风车。我国是世界上最早利用风能的国家之一,早在距今1800年前,我国就有风力提水的记载。1890年丹麦的p·拉库尔研制成功了风力发电机,1908年丹麦已建成几百个小型风力发电站。自二十世纪初至二十世纪六十年代末,一些国家对风能资源的开发,尚处于小规模的利用阶段[4]。

随着大型水电、火电机组的采用和电力系统的发展,1970年以前研制的中、大型风力发电机组因造价高和可靠性差而逐渐被淘汰,到二十世纪六十年代末相继都停止了运转。这一阶段的试验研究表明,这些中、大型机组一般在技术上还是可行的,它为二十世纪七十年代后期的大发展奠定了基础。

1980年以来,国际上风力发电机技术日益走向商业化。主要机组容量有300kw、600kw、750kw、850kw、1mw、2mw。1991年丹麦在vindeby建成了世界上第一个海上风电场,由11台丹麦bonus 450kw单机组成,总装机4.95mw。随后荷兰、瑞典、英国相继建成了自己的海上风电场。

目前,已经备离岸风力发电设备商业生产能力的厂家,主要有丹麦的vestas(包括被其整合的neg-micon),美国的ge风能,德国的nordex、repower、pfleiderer/prokon、bonus和德国著名的enercon公司。单机额定功率覆盖范围从2mw、2.3mw、3.6mw、4.2mw、4.5mw到5mw。叶轮直径从80m、82.4m、100m、110m、114m、116m到126m。

3.2 风力机的种类

风力发电机是把风能转换为电能的装置,鉴于风力发电机种类繁多,因此分类法也是多种。按叶片数量分,单叶片,双叶片,三叶片,四叶片和多叶片;按主轴与地面的相对位置分,水平轴、垂直轴(立轴)式;按桨叶工作原理分,升力型、阻力型。目前风力发电机三叶片水平轴类型居多。

水平轴风力机,风轮的旋转轴与风向平行,如图1所示;垂直轴风力机,风轮的旋转轴垂直于地面或气流方向,如图2所示。国内外风力发电的现状

4.1 世界风力发电的现状

目前,中、大型风力发电机组已在世界上40多个国家陆地和近海并网运行,风电增长率比其它电源增长率高的趋势仍然继续。如表1所示,截止2005年12月31日世界装机容量已达58,982mw,年装机容量为11,310mw,增长率为24%;风力发电量占全球电量的1%,部分国家及地区已达20%甚至更多。2005年世界风电累计装机容量最多的十个国家见表2,前十名合计51750.9mw,约占世界总装机容量的87.7%。

2005年国际风电市场份额的分布多样化进程呈持续发展趋势:有11个国家的装机容量已高于1,000mw,其中7个欧洲国家(德国、西班牙、意大利、丹麦、英国、荷兰、葡萄牙),3个亚洲国家(印度、中国、日本),还有美国。亚洲正成为发展全球风电的新生力量,其增长率为48%[5]。

2002年欧洲风能协会(ewea)与绿色和平组织(greenpeace international)发表了一份标题为“风力 12(wind force 12)”的报告,勾画了风电在2020年达到世界电量12%的蓝图。报告声明这份文件不是预测,而是从世界风能资源、世界电力需求的增长和电网容量、风电市场发展趋势和潜在的增长率、与核电和大水电等其他电源技术发展历程的比较以及减排co2等温室气体的要求,论证了风电达到世界电量12%的可能性。报告还指出中国2020年风电装机有可能达到1.7亿千瓦[6]、[7]。

国内风力发电的现状

根据国家气象科学院的估算[8],我国陆地地面10米高度层风能的理论可开发量为32亿kw,实际可开发量为2.53亿kw。海上风能可开发量是陆地风能储量的3倍。内蒙古 实际可开发量

0.618亿kw 西藏

实际可开发量

0.408亿kw 新疆

实际可开发量

0.343亿kw 青海

实际可开发量

0.242亿kw 黑龙江

实际可开发量

0.172亿kw

2005年中国除台湾省外新增风电机组592台,装机容量50.3万kw。与2004年当年新增装机19.8万kw相比,2005年当年新增装机增长率为254%。

截至2005年底,中国除台湾省外累计风电机组1864台,装机容量126.6万kw,风电场62个。分布在15个省(市、自治区、特别行政区),它们按装机容量排序如表3所示。与2004年累计装机76.4万kw相比,2005年累计装机增长率为65.6%。2005年风电上网电量约15.3亿kw.h[9]。

中国“十一五”国家科技支撑计划重大项目“大功率风电机组研制与示范”支持1.5~2.5mw、2.5mw以上双馈式变速恒频风电机组的研制;1.5~2.5mw、2.5mw以上直驱式变速恒频风电机组的研制;1.5mw以上风电机组叶片、齿轮箱、双馈式发电机、直驱式永磁发电机的研制及产业化;1.5mw以上双馈式风电机组控制系统及变流器、直驱式风电机组控制系统及变流器的研制及产业化;近海风电场建设关键技术的研究;近海风电机组安装及维护专用设备的研制;大型风电机组相关标准制定及风电技术发展分析等16个课题的研究[10]。“十一五”末,我国风电技术的自主研发能力将接近世界前沿水平。

4.3小型风力发电机

4.3.1小型风力发电机行业现状

作为农村可再生能源主要支柱之一的小型风力发电行业在2005年度得到长足的发展,从事小型风电产业的开发、研制、生产单位达到70家。据23个生产企业报表统计,2005年共生产30kw以下独立运行的小型风力发电机组共33,253台,比上年增长34.4%,其中200w、300w、500w机组共生产24,123台,占全年总产量的72.5%;15个单位共出口小型风力发电机组5,884台,比上年增长40.7%,创汇282.7万美元,主要出口到菲律宾、越南等24个国家和地区。并且,由于汽油、柴油、煤油价格飞涨,且供应渠道不畅通,内陆、江湖、渔船、边防哨所、部队、气象站和微波站等使用柴油发电机的用户逐步改用风力发电机或风光互补发电系统。

4.3.2 小型风力发电机行业发展趋势

1)由于广大农牧民生活水平提高、用电量不断增加,因此小型风力发电机组单机功率在继续提高,50w机组不再生产,100w、150w机组产量逐年下降,而200w、300w、500w和1kw机组逐年增加,占总年产量的80%。

2)由于广大农民迫切希望不间断用电,因此“风光互补发电系统”的推广应用明显加快,并向多台组合式发展,成为今后一段时间的发展方向。

3)随着国家《可再生能源法》及《可再生能源产业指导目录》的制定,相继还会有多种配套措施及税收优惠扶植政策出台,必将提高生产企业的生产积极性,促进产业发展。

4)目前我国尚有2.8万个村、700万户、2,800万人口没有用上电,且分散居住在边远山区、农牧区、常规电网很难达到,有关专家分析700万无电用户中、300万户可用微水电解决用电,而400万户可以用小型风力发电或风光互补发电,满足农牧民用电需要[11]。4.3.3浓缩风能型风力发电机

浓缩风能型风力发电机由内蒙古农业大学新能源技术研究所研制,已获得中国实用新型专利(专利号:zl94244155.9)。该型风电机组将稀薄的风能经浓缩风能装置加速、整流和均匀化后驱动叶轮旋转发电,从而提高了风能的能流密度,降低了自然风的湍流度,改善了风能的不稳定等弱点,提高了风能品位,降低了风电度电成本。该风力发电机具有的切入风速低、发电量大、噪音低、安全性高、寿命长、度电成本低等特点。浓缩风能型风力发电机可独立运行、风光互补运行、多机联网运行和并入低压电网运行。现已研制开发的系列产品有200w、300w、600w、1kw、2kw等机组。浓缩风能型风力发电机经过中试后,可以向中、大型机组发展。这种新型风电技术在中国和世界的应用,将有效地提高风电系统的供电水平和质量,有效地利用低品位的风能,提高风电商品竞争力,具有重要的经济益和生态环保效益[12]。结

在今后的20年内,国际上风力发电产业将是增长速度最快的产业,风力发电技术也将进入快速发展的黄金时期;在中国,并网型风力发电机组装机容量增长速度将明显加快,令世界瞩目,离网型风力发电机组发展的地域广、潜力大,装机总容量最终将超过并网型风力发电机组。

田德,吉林松原人,1958年8月生。内蒙古农业大学教授,华北电力大学教授,博士生导师。1985年赴日本留学,1992年9月获得日本明星大学电气工程学博士学位。现任中国农业工程学会理事、中国太阳能学会理事、《太阳能学报》编委、全国“百千万人才工程”第一、二层次人选。享受国务院政府特殊津贴。省级中青年突贡专家。省级优秀留学回国人员。主持完成的项目获内蒙古自治区科技进步一等奖1项,已获得中国实用新型专利1项。正申请国家发明专利3项。发表研究论文50余篇,多篇被ei收录。主持完成和正在主持的科研项目有:3项国家自然科学基金资助项目、3项国际合作项目、1项国家“十一五”科技攻关项目、9项省部级项目、3项横向项目。现从事离网型风力发电系统、并网型风力发电系统和可再生能源利用的研究。

[参考文献] [1]贺德馨.2020年中国的科学和技术发展研究[j].科技和产业,2004,4(1):36.[2][法]d·勒古里雷斯(著),施鹏飞(译).风力机的理论与设计[m].北京:机械工业出版社,1987:31~33.[3]叶杭冶.风力发电机组的控制技术[m].北京:机械工业出版社,2006:11~13.[4]陈云程,陈孝耀,朱成名,等.风力机设计与应用[m].上海:上海科学技术出版社,1990:1~11,48~51 [5]世界风能协会.2005年全球风能统计[j].中国风能,2006(1):17~20

[6] the european wind energy association, greenpeace force ://,2006.12.17.[11]李德孚.2005年小型风力发电行业现状与发展[j].中国风能,2006,(2):9~11 [12]田

德,王海宽,韩巧丽.浓缩风能型风力发电机的研究与进展[j].农业工程学报(增刊),中国农业工程学会第七次全国会员代表大会暨学术年会论文集,2003,19:177~181.

全文阅读已结束,如果需要下载本文请点击

下载此文档
a.付费复制
付费获得该文章复制权限
特价:5.99元 10元
微信扫码支付
已付款请点这里
b.包月复制
付费后30天内不限量复制
特价:9.99元 10元
微信扫码支付
已付款请点这里 联系客服
Baidu
map